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Abstract

Background: Early detection and intervention are the key factors for improving outcomes in COVID-19.

Objective: To detect severity subgroups among COVID-19 patients, based only on clinical data and standard laboratory tests
obtained during the assessment at the emergency department.

Methods: We applied unsupervised machine learning to a dataset of 853 COVID-19 patients from HM hospitals in Spain.

Results: From a total of 850 variables, four tests, the serum levels of aspartate transaminase (AST), lactate dehydrogenase
(LDH) and C-reactive protein (CRP), and the number of neutrophils, were enough to segregate the entire patient pool into three
separate clusters. Further, the percentage of monocytes and lymphocytes and the levels of alanine transaminase (ALT)
distinguished the cluster 3 from the other two clusters. The cluster 1 was characterized by the higher mortality rate and higher
levels of AST, ALT, LDH, CRP and number of neutrophils, and low percentage of monocytes and lymphocytes. The cluster 2
included patients with a moderate mortality rate and medium levels of the previous laboratory determinations. The cluster 3 was
characterized by the lower mortality rate and lower levels of AST, ALT, LDH, CRP and number of neutrophils, and higher
percentage of monocytes and lymphocytes. Age, sex, comorbidities, and vital signs did not allow us to separate the three clusters.
An online cluster assignment tool can be found at https://g-nec.car.upm-csic.es/COVID19-severity-group-assessment/.

Conclusions: A few standard laboratory tests, deemed to be available in all emergency departments, have shown far
discriminative power for characterization of severity subgroups among COVID-19 patients.
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Background: Early detection and intervention are the key factors for improving outcomes

in the 2019 coronavirus infectious disease (COVID-19). Objective: Our aim was to identify

severity subgroups (clusters) among COVID-19 patients, based exclusively on clinical data

and  standard  laboratory  tests,  obtained  during  the  assessment  in  the  emergency

department.  Methods:  We applied  unsupervised machine learning  to  a  dataset  of  853

COVID-19 patients from HM hospitals in Madrid (Spain). Age and sex were not considered

while building the clusters as these variables could introduce biases in machine learning

algorithms and raise ethical  implications or  discriminations in  triage protocols.  Results:

From  850  clinical  and  laboratory  variables,  four  tests,  the  serum  levels  of  aspartate

transaminase (AST), lactate dehydrogenase (LDH) and C-reactive protein (CRP), and the

number of neutrophils, were enough to segregate the entire patient pool into three separate

clusters. Further, the percentage of monocytes and lymphocytes and the levels of alanine

transaminase (ALT) distinguished the cluster 3 from the other two clusters. The highest

mortality rate and the highest levels of AST, ALT, LDH, CRP and number of neutrophils, and

low percentage of monocytes and lymphocytes, characterized the cluster 1. The cluster 2

included  patients  with  a  moderate  mortality  rate  and  medium  levels  of  the  previous

laboratory tests. The lowest mortality rate and the lowest levels of AST, ALT, LDH, CRP and

number  of  neutrophils,  and  the  highest  percentage  of  monocytes  and  lymphocytes,

characterized the cluster 3. An online cluster assignment tool can be found at https://g-

nec.car.upm-csic.es/COVID19-severity-group-assessment/.

Conclusion:  A  few  standard  laboratory  tests,  deemed  available  in  all  emergency

departments,  have  shown  far  discriminative  power  for  characterization  of  severity

subgroups among COVID-19 patients. 
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1. INTRODUCTION

The  2019  coronavirus  infectious  disease  (COVID-19)  pandemic  has  brought  the

scarcity of healthcare resources worldwide to light.[1] One of the main challenges faced by

the healthcare systems while tackling this pandemic is the lack of affordable, accurate and

simple information that can allow clinicians to predict the evolution of the patients sooner,

https://preprints.jmir.org/preprint/25988 [unpublished, peer-reviewed preprint]



JMIR Preprints Benito-León et al

upon admission to  the hospital.  This  information might  help the clinicians to  take early

decisions regarding arrangement and organization of medical resources, as well as early

interventions to improve health outcomes in these patients.

The exhaustive and inefficiently  structured amount of health data available do not

permit  parametric modelling in an easy way.  To overcome this issue, machine learning

techniques have recently been identified as promising tools in data analysis for individual

class prediction allowing us to deal with a great number of variables simultaneously and

observe inherent disease-related patterns in the data.[2]

Machine learning for healthcare is a key discipline aimed to translate large health

datasets into  operative knowledge in different  medicine fields.[3-7] The methods of this

paradigm of artificial intelligence can be classified, on the basis on the underlying strategy

used, in supervised and unsupervised.[8] In inductive or supervised machine learning, the

method builds, from a set of previously categorized examples, a general class description

of the target  categories.[8] In general,  supervised learning methods are used to design

classifiers from labeled samples that predict the class of an unseen new sample.[8] In the

field  of  medicine,  these  methods  have  been  applied  to  find  prognostic  and  predictive

biomarkers.[9] On the other hand, in unsupervised machine learning, the goal is to find the

class or classes that cover the sample.[8] These methods permit to discover the underlying

structure and relations among unlabeled samples.[8] Unsupervised clustering techniques

can obtain groups of samples, so that the intra-similarity within each group is maximized,

while inter-similarity between groups is minimized.[8] They are usually applied in medicine

to identify homogeneous groups of patients based on their medical records and relations

between  clinical  manifestations  and  therapeutic  responses,  or  to  detect  sets  of  co-

expressed genes, among others.[10, 11]
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There  are  several  research  reports  using  COVID-19  datasets,  which  focus  on

predicting  the  patients’  mortality  or  severity  by  using  mainly  regression  modeling  from

labeled clinical records.[12-17] Further, in a multi-center study, using supervised machine

learning,  a  personalized  COVID-19  mortality  risk  score  for  hospitalized  patients  upon

admission has been proposed;[18] however,  in  that  study,[18] it  was not  explained the

reason for choosing only a subset of the recorded clinical variables to build their model.

Therefore, the algorithm might have been biased, even by expert’s knowledge. In all these

studies  [12-18] and in a study based on cluster analysis,[19] demographics, such as age

and sex, were considered as key variables in their prediction models. By contrast, these

variables were deliberately excluded from the training dataset in the present study in which

we used an unsupervised machine learning method for data handling.

Health  agencies  recommend  that  clinical  decisions  should  be  made  based  on

individual’s  biological  age  rather  than  chronological  age.[20,  21] There  are  multiple

physiological  and  molecular  markers  for  estimation  of  biological  aging  that  can  predict

lifespan.[22] Beside these markers, the heterogeneity of eating habits, physical and mental

conditions, and therapeutics have influence on the overall health state, making biological

aging a heterogeneous process too.

Frailty and multi-morbidities, as measures of biological aging, have been found as

risk factors for mortality independent of chronological age in patients with COVID-19.[23]

New procedures for  the therapeutic  management of  COVID-19 are required regardless

chronological age.[24] 

Furthermore, reports about case-fatality rate for COVID-19 scheduled by age groups

could  sentence  elderly  people  not  only  to  social  exclusion,  but  also  to  healthcare

indifference. Considering elderly population as a highly vulnerable group is a simple and
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negative  stereotyping  that  may even influence decision  making in  the  clinical  resource

management.[25] 

There  is  also  a  different  gender-based  prevalence  and  severity  of  COVID-19,

demonstrating men having higher mortality than women.[26] The severity of the disease

implies that the person may need hospitalization, intensive care support, and mechanical

ventilation.  However,  the medical  treatments scheduled during hospitalization or stay in

intensive care is the same for every severe patient of COVID-19, regardless age or sex.[27]

Since chronological age as well as sex cannot be considered as pivotal aspects to

determine  the  individual’s  health  status  and  resilience,[28] these  should  not  be  key

determinants for healthcare or resource allocation amid people suffering from COVID-19.

Therefore, predictive models based on intelligent data processing that takes into account

the age as a major determinant in the access for healthcare may be inappropriate and

unethical.[25]

Demographic variables (i.e., age and sex) were not used by the previously published

studies, which were based on either artificial intelligence algorithms or regression modeling,

for  building  models  on  effective  treatments  based  upon  sex  or  age  groups  or  for

understanding  sex  or  age  differences.[12-19] These  predictive  models  of  severity  and

mortality risk for COVID-19 could be discriminating.[29] For example, consideration of the

age  of  people  in  the  emergency  department  might  discriminate  against  older  people

(ageism) in the access to care, since the decision would be based purely upon age of the

population rather than their healthcare needs.[30]

Our  aim  was  to  identify  non-overlapping  severity  subgroups  (clusters)  among

COVID-19 patients, using exclusively standard laboratory tests and clinical data obtained

during the first medical contact in the emergency department, by means of unsupervised
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machine  learning  techniques.  Age  and  sex  were  not  taken  into  account  to  build  the

subgroups by ethical implications. For this purpose, we used the dataset collected by the

HM group of hospitals in Madrid (Spain) (HM, 2020).[31] 

2. MATERIAL AND METHODS

2.1. Dataset

We used a dataset collected by the HM group of hospitals in Madrid (Spain) in the

context of the project COVID DATA SAVE LIVES (HM, 2020).[31] The information of this

dataset comes from the electronic health records data system of the seven HM hospitals,

placed  at  the  Madrid  community  in  Spain.[31] This  dataset  contains  the  anonymized

records of 2,310 patients, admitted to any of the seven HM hospitals, with a diagnosis of

COVID-19 from March 1st,  2020 to  April  24th,  2020.  The dataset  collects  the different

interactions  in  the  COVID-19  treatment  processes,  including  detailed  information  on

diagnoses,  treatments,  intensive  care  unit  (ICU)  admission,  discharge or  death,  among

many other variables. They also include diagnostic imaging and laboratory tests or records

of previous medical care, if any. It also includes the drugs administered to each patient

during admission (more than 60,000 records) with the dates corresponding to the first and

last administration of each drug identified by their  brand name and classification in the

Anatomical Therapeutic Chemical codes (ATC5/ATC7). Moreover, laboratory data are also

included (398.884 records). Finally, it contains the records of the diagnostic and procedural

information,  coded  according  to  the  international  ICD-10  classification  in  its  latest

distributed version, for the patients referred, both for episodes of hospital admission (more

than 1,600) and for the emergency (more than 1,900) prior to those episodes, if any.

2.2. Data preprocessing

https://preprints.jmir.org/preprint/25988 [unpublished, peer-reviewed preprint]
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We collected the information for each patient identifier in one record. This included

age, sex, vital constants in the emergency department and the need or not of ICU. COVID-

19  symptoms,  ICD-10  codes  of  previous  and  current  conditions,  as  well  as  different

laboratory tests performed in the emergency department,  were also recorded.  We also

calculated  for  each  patient  the  duration  (in  days)  of  the  hospital  stay,  including  ICU

admission and the days from hospitalization to ICU admission. We also considered the first

laboratory  tests  obtained  from the  emergency  department  and  grouped  all  the  ICD-10

codes under the first three characters (first letter and two subsequent numbers) of the code

to reduce the number of variables and provide generalization. We codified each ICD-10

feature  grouped  as  “present  in  emergency  department  admission”,  “not  present  in

emergency department admission” or “developed during hospital stay”.

Only  the  patients  with  discharge  reason  equals  to  “Death”  or  “Recovered”  were

included for the analyses. The patients with discharge reason equals to “Transferred to

another  hospital”  or  “Transferred  back  to  the  nursing  home”  (about  3.6%  of  the  total

dataset)  were excluded since no additional  information was available after  they left  the

hospital. We only selected the records (patients) without missing values on clinical data and

laboratory  tests,  which  left  a  final  sample  of  853  (37.2% women)  patients,  who  were

included in our analyses. Their mean age was of 67.2 ± 15.7 years (range: 21-106). Each

one  of  these  patients  had  850  variables,  including  eight  regarding  demographics,

hospitalization stay and outcome measures; one about COVID-19 symptoms; 10 about vital

signs (temperature, heart rate, oxygen saturation, and systolic and diastolic blood pressure)

in the emergency department; 29 laboratory tests in the emergency department (see Table

1); 168 ICD-10 codes in the emergency department; and 634 ICD-10 codes during hospital

stay.

The final sample of 853 was similar to the excluded sample (N=1,457) in terms of
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age (66.2 ± 15.7 vs. 67.1 ± 17.0, F(1.2308) = 1.508, p = .22); discharge reason (selected

deceased:  15.6%  vs.  excluded  deceased:  18.2%,  F(1.2308)  =  2.474,  p  =  .116);  ICU

admission (6.8% vs. 7.3%; F(1.2308) = 0.003, p = .957); or admission date (March 27, 2020

± 8.3 days vs. March 28, 2020 ± 11.6 days). However, there were significant differences in

terms of sex (37.2% women vs 42.2% women; F(1.2308) = 5.768, p = .016) and days in

hospital (9 ± 6 vs 8 ± 7; F(1.2308) = 4.786, p = .029). Notwithstanding, the effect size was

small for both differences (η2 = 0.003 and η 2= 0.002, respectively).

Table 1. Laboratory tests used to characterize the patients.

Code Description Unit
RDW Red cell distribution width %
BAS Basophils x10e3/µL
BAS% % of Basophils %
MCHC Mean corpuscular hemoglobin concentration g/dL
CREA Creatinine mg/dL
EOS Eosinophils x10e3/µL
EOS% % of Eosinophils %
GLU Glucose mg/dL
AST Aspartate transaminase U/L
ALT Alanine transaminase U/L
MHC Mean cell hemoglobine pg
HCT Hematocrit %
RBC Red blood cells x10e6/µL
HB Hemoglobin g/dL
K Potasium mmol/L
LDH Lactate dehydrogenase U/L
LEUC Leucocytes x10e3/µL
LYM Lymphocytes x10e3/µL
LYM% % of Lymphocites %
MONO Monocytes x10e3/µL
MONO% % of Monocytes %
NA Sodium mmol/L
NEU Neutrophils x10e3/µL
NEU% % of Neutrophils %
CRP C-reactive protein mg/L
PLAT Platelet count x10e3/µL
BUN Blood urea nitrogen mg/dL
MCV Mean cell volume fL
MPV Mean platelet volume fL

2.3. Clustering

The unsupervised automatic clustering X-Means,[32] concretely the implementation
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in RapidMiner Studio 9.7 Community Edition (RapidMiner,  Inc.,  Boston, MA, USA), was

applied to  the preprocessed dataset  previously  described (section Data preprocessing).

The algorithm determines the optimum number of clusters so that the intra-cluster distance

of patients is minimum, and the inter-cluster distance of patients is maximum. The X-Means

algorithm was used instead of the most common K-Means algorithm to overcome the three

major shortcomings of the latter:[32] poor computational scaling, manual selection of the

number of clusters and tendency to local minima. X-Means determines the optimal number

of clusters by the Bayesian Information Criterion (BIC), also known as Schwarz criterion,

which is used to maximize the explained variance by the clusters and minimize the number

of parameters (k).[32] The latter is also an improvement over K-means since this tends to

create clusters formed by only one sample to minimize inertia.[32] Moreover, the later use

of  the  Davies  Bouldin  index  to  evaluate  the  cluster  distributions  is  also  intended  to

overcome this issue since it considers a mix of both inertia and distortion to quantitatively

asses the cluster models (see below). In addition, the automatic selection of the number of

clusters by X-Means avoids the possible bias in the manual selection of k. [32] This bias is

also present in Hierarchical Agglomerative Clustering (HAC), where a threshold must be set

to obtain the ultimate clusters after the hierarchy is built. Despite X-Means is not completely

deterministic, it is certainly very stable with minimum variations between different runs, [32]

and significantly more stable than K-means. X-Means introduces a bias though. Since it

uses the BIC to evaluate the cluster models in each iteration, this criterion purposely favors

the models with a lesser number of clusters. This means that an alternative cluster model

with a better  Davies Boulding index and a higher number of  clusters might have been

discarded. However,  more number of clusters with better Davies Boulding index usually

implies clusters with small number of samples (notice that the best index would be obtained

by  a  model  of  one  cluster  per  sample),  which  is  not  desirable  at  all  for  the  clinical
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stratification purpose aimed in this study.

Patients  were  considered  here  as  vectors  with  several  dimensions  equal  to  the

number of variables. In this case, the number of variables taken to apply the clustering

algorithm was 842. None of the eight variables regarding demographics, hospital stay and

outcome  measures  were  included.  They  were  removed  from  the  clustering  formation

because  the  potential  ethical  controversies  and  biasing  (demographics)  or  prospective

information (hospitalization stay and outcome measures). The algorithm was applied using

several  similarity  or  distance  metrics  between  patients:[33] the  Euclidean distance,  the

Camberra distance, the Chebychev distance, the correlation similarity, the cosine similarity,

the Dice similarity, the Inner Product similarity, the Jaccard similarity, the Kernel Euclidean

distance,  the Manhattan distance,  the Max Product  similarity,  the overlap similarity,  the

Generalized divergence, the Itakura Saito distance, the KL divergence, the logarithmic loss,

the  logistic  loss,  the  Mahalanobis  distance,  the  Squared  Euclidean  distance  and  the

Squared loss. In spite of we could have had a priori good similarity measure candidates,

based  on  dataset  characteristics,  such  as  dimensionality,  the  best  practice  was  the

selection based on empirical evaluation.[34] To avoid any a priori biases, we just empirically

tested all measures available in the software and just kept the one yielding the best results.

To assess the fitness of the cluster distributions from the algorithm executions with

the above metrics, the Davies Bouldin index was calculated for each one of them.[35] The

Davies  Bouldin  index  is  a  common  measure,  which  evaluates  cluster  models.[35] It

quantifies the average maximum ratio of the within-cluster scatter to the between-cluster

separation for every pair of clusters in a cluster model.[35] In other words, it provides a

trade-off between inter-cluster similarity and intra-cluster distance.[35] With this definition,

the lower the Davies Bouldin index the lower the within-cluster scatter and the higher the

between-cluster separation, which is the best desirable property of a cluster model.[35] The
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Davies Bouldin index allowed us to quantitatively select the best cluster model among those

created, one for each similarity measure considered.

2.4. Cluster validation

From  the  1,457  patients  excluded  due  to  missing  values  (not  used  to  obtain  the

clusters), we performed a validation analysis with the patients who presented no missing

values  in  the  variables  that  statistically  differed  between  the  three  clusters  obtained.

Subsequently, these patients were assigned to one of the clusters previously obtained by

using the best distance metric determined in the clustering process described above.

2.5. Statistical analysis

The difference in the 850 variables between all the clusters obtained was tested by a

multivariate  analysis  of  variance  (one-way  MANOVA).  Pairwise  post-hoc  comparisons

between clusters were analyzed by Bonferroni test. Significance was accepted at the 5%

level (α = 0.05). The observed power and effect size (as partial eta squared) were reported

for statistically significant differences.

3. RESULTS

Table 2 shows the number of clusters and the corresponding David Bouldin index of

the cluster distribution of patients obtained by the X-Means clustering algorithm for each of

the similarity measures tested. Note that the lower the David Bouldin index the better the

cluster distribution (higher inter-cluster distance and lower intra-cluster distance).  The best

cluster  distribution  (lowest  David  Bouldin  index)  was  obtained  by  using  the  Manhattan

distance, which grouped the patients into three clusters.
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Table 2. Number of clusters and the corresponding David Bouldin index.

Similarity measure David Bouldin index Number of clusters

Euclidean distance 0.948 3

Camberra distance - 1

Chebychev distance 0.966 3

Correlation similarity 1.400 3

Cosine similarity 1.629 3

Dice similarity - 1

Inner Product similarity - 1

Jaccard similarity 1.387 3

Kernel Euclidean distance 1.440 3

Manhattan distance 0.701 3

Max Product similarity - 1

Overlap similarity 5.099 4

Generalized divergence 3.445 3

Itakura Saito distance 5.919 4

KL divergence 5.677 4

Logarithmic loss 4.595 4

Logistic loss 3.445 3

Mahalanobis distance 4.595 4

Squared Euclidean distance 3.445 3

Squared loss 3.659 3

Demographic  and clinical  characteristics  of  the patients  in  the three clusters  are

shown  in  Table  3.  Notice  that  this  table  also  shows the  values  of  the  eight  variables

(demographics,  hospital  stay  and  outcome  measures),  which  were  not  used  in  the

construction of the clusters (marked with ‘†’ in Table 3). The patients in cluster 1 had a

significantly higher mortality rate (46.6%) than patients in cluster 2 (18.0%) and cluster 3

(10.0%). No significant difference in the percentage of ICU admission was found between

clusters. However, the patients who were admitted to ICU in cluster 1 stayed a significantly

shorter time than patients in cluster 3. No significant difference in sex was found between

clusters. Patients in cluster 3 were significantly younger than those ones in cluster 1. In

addition,  clusters 1 and 2 presented a significantly  higher  heart  rate in  the emergency

department than cluster 3. The average oxygen saturation in the emergency department
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was significantly different between all  clusters,  showing the cluster 1 the lowest oxygen

saturation and the cluster 3 the highest. With respect to the previous diseases and surgical

procedures,  cluster  1  presented  a  significantly  higher  percentage  of  epilepsy  and

emphysema than clusters 2 and 3. In addition, cluster 2 presented a higher percentage of

previous surgical procedures as well as previous thoracic, thoracolumbar, and lumbosacral

intervertebral disc disorders than cluster 3, and a significantly lower percentage of disorders

of  purine  and  pyrimidine  metabolism than  clusters  1  and  3.  Finally,  the  percentage  of

patients  who  developed  surgical  operations  during  the  current  hospitalization  was

significant higher in cluster 1 than in clusters 2 and 3.

Regarding the laboratory tests, the patients in cluster 1 showed significantly higher

levels of serum creatinine, potassium, and blood urea nitrogen than clusters 2 and 3, and a

significantly higher value of red cell distribution width than cluster 2. In addition, patients in

cluster 2 presented significantly higher values of lymphocytes and serum levels of sodium,

and significantly lower platelet count than patients in cluster 3. In addition, cluster 3 showed

lower values of mean corpuscular hemoglobin concentration, leucocytes, serum levels of

alanine  transaminase (ALT),  and percentage of  neutrophils  than clusters  1 and 2,  and

significantly higher values of eosinophils (and percentage) and percentage of lymphocytes

than  clusters  1  and  2.  Finally,  the  laboratory  tests  that  showed  significant  differences

between all clusters were the serum levels of aspartate transaminase (AST) (cluster 1 >

cluster 2 > cluster 3), lactate dehydrogenase (LDH) (cluster 1 > cluster 2 > cluster 3), C-

reactive protein (CRP) (cluster 1 > cluster 2 > cluster 3) and the number of neutrophils

(cluster 1 > cluster 2 > cluster 3).
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Table 3. Demographic and clinical characteristics of the patients (N= 853) in the three clusters. Variables marked with the ‘†’
superscript were not used for the cluster construction.

Cluster 1 Cluster 2 Cluster 3 Statistics
(N=58) (N=300) (N=495)

Demographics
Age† 71.1 (13.7)a 67.0 (15.1)a,b 65.1 (16.2)b F(2,850)=3.457;p=.032;η2=0.009;1-β=0.648
Sex (men)† 70.7%a 60.3%a 63.3%a F(2,850)=1.027;p=.358; η2=0.003;1-β =0.23
Hospital stay and outcome measures
Inpatient hospital days† 8.5 (4.9)a 8.6 (6.4)a 8.3 (5.1)a F(2,850)=0.363;p=.695; η2=0.001;1-β =0.109

Discharge reason†

Recovere
d

31 (53.4%) 246 (82.0%) 443 (89.5%)
F(2,850)=26.054;p<.0001; η2=0.062;1-β=1

Decease
d

27 (46.6%)a 54 (18.0%)b 52 (10.5%)b

Intensive care unit  admission† No 52 (89.7%) 277 (92.3%) 458 (92.5%)
F(2,850)=1.12;p=.327; η2=0.003;1-β=0.248

Yes 6 (10.3%)a 23 (7.7%)a 37 (7.5%)a

Days until intensive care unit admission† 0.2 (0.4)a 3.4 (6.3)a 2.3 (4.3)a F(2,850)=1.393;p=.256; η2=0.042;1-β=0.289
Days in intensive care unit† 0.2 (0.4)a 4.8 (6.5)a,b 7.6 (6.9)b F(2,850)=3.747;p=.029; η2=0.106;1-β=0.665
Mechanical ventilation need† 35 (60.3%)a 177 (59.0%)a 277 (56.0%)a F(2,850)=0.163;p=.850; η2<.0001;1-β=0.075
Vitals and laboratory tests
First  heart  ratio  measurement  in  the  emergency
department

98.4 (25.0)a,b 100.1 (26.2)a 93.5 (24.4)b F(2,850)=8.45;p<.0001;η2=0.021;1-β=0.965

First  oxygen  saturation  measurement  in  the  emergency
department

84.2 (12.3)a 90.1 (7.6)b 94.2 (3.6)c F(2,850)=81.732;p<.0001;η2=0.171;1-β=1

Last heart ratio measurement in the emergency department 99.0 (25.1)a,b 100.1 (26.)a 93.6 (24.7)b F(2,850)=8.104;p<.0001; η2=0.02;1-β=0.958
Last  oxygen  saturation  measurement  in  the  emergency
department

84.2 (12.2)a 90.0 (7.52)b 94.2 (3.6)c F(2,850)=82.554;p<.0001; η2=0.172;1-β=1

Red cell distribution width 13.6 (1.9)a 12.9 (1.84)b 13.0 (1.9)a,b F(2,850)=3.28;p=.038; η2=0.008;1-β=0.623
Basophils 0.03 (0.03)a 0.02 (0.02)a,b 0.02 (0.0)b F(2,850)=5.545;p=.004; η2=0.014;1-β=0.854
Mean corpuscular hemoglobin concentration 33.9 (1.5)a 34.0 (1.17)a 33.6 (1.2)b F(2,850)=8.602;p<.0001; η2=0.021;1-β=0.968
Creatinine 1.3 (1.4)a 1.0 (0.47)b 1.0 (0.5)b F(2,850)=9.591;p<.0001; η2=0.024;1-β=0.981
Eosinophils 0.02 (0.04) a 0.02 (0.04)a 0.04 (0.1)b F(2,850)=6.518;p=.002; η2=0.016;1-β=0.908
% of Eosinophils 0.20 (0.5)a 0.3 (0.60)a 0.6 (1.2)b F(2,850)=10.000;p<.0001; η2=0.025;1-β=0.985
Aspartate transaminase 80.3 (48.0)a 55.8 (33.4)b 32.8 (18.7)c F(2,850)=109.193;p<.0001; η2=0.216;1-β=1
Alanine transaminase 57.2 (69.1)a 50.7 (48.1)a 29.5 (23.8)b F(2,850)=32.686;p<.0001; η2=0.076;1-β=1
Potasium 4.6 (0.8)a 4.2 (0.6)b 4.2 (0.5)b F(2,850)=16.957;p<.0001; η2=0.041;1-β=1
Lactate dehydrogenase 1339.72 (240.56)a 742.5 (122.0)b 447.7 (91.5)c F(2,850)=1666.635;p<.0001; η2=0.808;1-β=1
Leucocytes 9.9 (4.8)a 8.5 (4.2)a 6.9 (5.2)b F(2,850)=13.055;p<.0001; η2=0.032;1-β=0.997
Lymphocytes 1.0 (0.5)a,b 1.0 (0.6)a 1.3 (2.1)b F(2,850)=3.692;p=.025; η2=0.009;1-β=0.679
% of Lymphocites 12.6 (7.8)a 14.0 (7.7)a 20.0 (9.8)b F(2,850)=46.962;p<.0001; η2=0.106;1-β=1
% of Monocytes 5.1 (2.9)a 6.6 (3.9)a 8.7 (4.8)b F(2,850)=29.321;p<.0001; η2=0.069;1-β=1
Sodium 136.2 (7.1)a,b 136.2 (4.4)a 137.2 (4.6)b F(2,850)=4.016;p=.018; η2=.01;1-β=0.718
Neutrophils 8.4 (4.7)a 6.9 (4.0)b 4.9 (2.7)c F(2,850)=45.584;p<.0001; η2=0.103;1-β=1
% of Neutrophils 81.8 (10.2)a 78.8 (9.9)a 70.4 (11.9)b F(2,850)=62.070;p<.0001; η2=0.135;1-β=1
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C-reactive protein 206.1 (131.7)a 152.1 (110.0)b 64.2 (63.7)c F(2,850)=12.930;p<.0001; η2=0.233;1-β=1
Platelet  count 229.0 (92.2)a,b 236.3 (96.6)a 210.3 (87.2)b F(2,850)=7.541;p=.001; η2=0.019;1-β=0.944
Blood urea nitrogen 58.9 (56.6)a 41.8 (29.0)b 40.5 (29.7)b F(2,850)=7.579;p=.001; η2=0.019;1-β=0.945
Diseases and Surgical procedures
Previous  history  of  disorders  of  purine  and  pyrimidine
metabolism

6.9%b 1.3%a 5.1%b F(2,850)=4.179;p=.016; η2=0.01;1-β =0.736

Previous history of epilepsy and recurrent seizures 5.2%a 1.30%b 0.4%b F(2,850)=5.660;p=.004; η2=.014;1-β =.862
Previous history of emphysema 5.2%a 0.70%b 0.4%b F(2,850)=6.663;p=.001; η2=0.017;1-β=0.914
Previous  history  of  thoracic,  thoracolumbar,  and
lumbosacral intervertebral disc disorders

0.0%a,b 3.0%a 0.6%b
F(2,850)=4.385;p=.013; η2=0.011;1-β=0.758

Previous history of surgical procedures 0.0% a,b 1.3% a 0.0% b F(2,850)=3.753;p=.024; η2=0.009;1-β =0.686
Surgical operations during the current hospitalization 5.2%a 0.7%b 0.8%b F(2,850)=4.880;p=.008; η2=0.012;1-β =0.804

Mean (median) ± standard deviation and frequency (%) are reported.
*Values in the same row not sharing subscript letters showed significant difference after Bonferroni post-hoc correction.
 η2: Effect size; 1- β: Observed power. 
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For a clearer characterization of the clusters, the Figure 1 shows a radar

chart with the variables (hospital stay, outcome measures and laboratory tests),

which  showed  statistically  significant  differences  among  the  clusters  and  a

medium or high effect size (η2 > 0.06).[36].

An online cluster assignment tool, according to the results reported here,

can  be  found  at:  https://g-nec.car.upm-csic.es/COVID19-severity-group-

assessment/

To  test  the  robustness  of  the  identified  clusters,  we  performed  a

validation analysis using the initially excluded patients without missing values in

the  variables  that  statistically  differed  among  the  three  clusters  (Table  3).

Specifically,  it  was  based  on  six  variables  (first  and  last  oxygen  saturation

measurement in the emergency department, AST, LDH, neutrophils and CRP).

For this purpose, we selected 349 patients initially excluded who were assigned

to one of the three previously identified clusters by the minimum Manhattan

distance to the average values of the six mentioned variables of those clusters.

Table  4  shows the  differences in  demographics,  hospital  stay  and outcome

measures  in  the  three  clusters.  Indeed,  the  clusters  initially  obtained  were

consistent with the cluster assigned in the validation analysis in terms of age,

sex, hospital stay, and outcome measures. Specifically, the cluster 1 was the

one with the oldest and highest number of men, as well as with the highest

mortality rate and number of patients who required mechanical ventilation. By

contrast, the cluster 3 was the one with the youngest and lowest number of

men, and with the lowest mortality rate and number of patients who required

mechanical ventilation. 

https://preprints.jmir.org/preprint/25988 [unpublished, peer-reviewed preprint]



JMIR Preprints Benito-León et al

Table 4. Demographics, hospital  stay and prognosis of  the patients (N= 349) selected for the validation analysis in the three
clusters.

Cluster 1
(N=18)

Cluster 2
(N=112)

Cluster 3
(N=219)

Statistics

Demographics
Age 72.8 (14.2)a,b 71.3 (14.3)a 64.2 (15.8)b F(2,346)=9.414; p<.0001;η2=0.052;1-β=0.979
Sex (men) 77.8%a 60.7%a 56.2%a F(2,346)=1.738;p=.177; η2=0.010;1-β =0.364
Hospital stay and outcome measures
Inpatient hospital days 9.1 (6.4)a 9.3 (5.9)a 8.0 (5.3)a F(2,346)=2.320;p=.100; η2=0.013;1-β =0.469
Discharge reason Recovered 8 (44.4%) 80 (71.4%) 200 (91.3%) F(2,346)=22.025;p<.0001; η2=0.113;1-β=1

Deceased 10 (55.6%)a 32 (28.6%)b 19 (8.7%)c

Intensive care unit  admission No 16 (88.9%) 101 (90.2%) 213 (97.3%) F(2,346)=4.268;p=.015; η2=0.024;1-β=0.743
Yes 2 (11.1%)a,b 11 (9.8%)a 6 (2.7%)b

Days until intensive care unit admission 6.5 (7.8)a 4.1 (3.9)a 6.3 (13.7)a F(2,16)=.170;p=.845; η2=0.021;1-β=0.072
Days in intensive care unit 4.5 (0.7)a 3.8 (4.5)a 3.2 (4.6)a F(2,16)=.082;p=.922; η2=0.010;1-β=0.060
Mechanical ventilation need 12 (66.7%)a 54 (48.2%)a 96 (43.8%)a F(2,346)=1.854;p=.158; η2=0.011;1-β=0.385

Mean (median) ± standard deviation and frequency (%) are reported.
*Values in the same row not sharing subscript letters presented significant differences after Bonferroni post-hoc correction.
 η2: Effect size; 1- β: Observed power.
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4. DISCUSSION

With  the  application  of  unsupervised  machine  learning  approach,  we

could identify and segregate patients with COVID-19 into subgroups depending

upon the severity of disease, simply using standard laboratory tests performed

during the first medical assessment in the emergency department. We found

that inflammatory (CRP), hematologic (number of neutrophils and percentage of

monocytes and lymphocytes), and serum biochemical abnormalities (AST, ALT,

and LDH), mainly indicating liver dysfunction, detected upon admission to the

hospital, can predict the severity of the disease. From a sum of 850 variables,

collected in the emergency department, only four standard laboratory tests, i.e.

serum  AST,  LDH,  CRP,  and  the  number  of  neutrophils,  were  enough  to

segregate these patients into three separate clusters. Of these, the levels of

LDH showed the biggest effect size, practically allowing us to differentiate the

three clusters linearly. Further, the percentage of monocytes and lymphocytes

as well as ALT distinguished the cluster 3 (less severe) from the other two. The

cluster 1 was characterized by the higher mortality rate, early ICU admission

and high values of AST, ALT, LDH, number of neutrophils and CRP, and low

values of monocytes (%) and lymphocytes (%) (See Figure 1). The cluster 2

included a group of patients with a moderate mortality rate, late ICU admission

and medium values of the previous laboratory tests (see Figure 1). Finally, the

cluster 3 was characterized by the lower mortality rate,  medium time to ICU

admission and lower values of AST, ALT, LDH, number of neutrophils and CRP,

and high values of monocytes (%) and lymphocytes (%) (See Figure 1). 

Our results have several clinical implications. First, age and sex were not

considered while  building the clusters.  Therefore,  our unsupervised machine
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learning approach, based exclusively on the performance of simple laboratory

tests at a primordial stage, would permit to establish a strategy for rationing of

healthcare  resources,  and  to  settle  a  triage  protocol,  which  would  support

medical decisions in a transparent and ethical way. Second, since the analyzed

data are standard laboratory tests, this method would have a special value for

underdeveloped  and  developing  areas  with  lack  of  medical  resources  and

affordability  issues.  Finally,  we could tailor  treatment  to  each severity  group

accordingly  at  a  primordial  stage  (i.e.,  in  the  emergency  department).  For

example, more aggressive therapies could be considered in patients classified

in the cluster 1 (the most severe), and not in those ones in the cluster 3 (the

least severe).

Initially, the novel severe acute respiratory syndrome coronavirus (SARS-

CoV-2) was primarily considered as a respiratory pathogen. However, with time

it has behaved as a virus with the potential to cause multi-system involvement.

[37, 38] Specifically,  hepatic injury related to  COVID-19 is only beginning to

unravel.  Elevated  liver   injury  indicators,   particularly  AST,  are  strongly

associated  with  a higher mortality risk in COVID-19 patients.[39] Of note, high

serum levels of LDH predicts higher in-hospital mortality in severe and critically

ill COVID-19 patients.[40] Significant increased CRP levels in early stages of

COVID-19 disease are correlated with the severity of disease and the degree of

internal tissue pathologies.[41] Further, a significant increase in the number of

neutrophils  with  decrease  in  the  number  of  lymphocytes,  monocytes  and

eosinophils  may  indicate  clinical  worsening  and  increased  risk  of  a  poor

outcome  among  COVID-19  patients.[42] Taken  together,  the  presence  of

elevated biomarkers of inflammation and that of liver injury in serum, as well as

https://preprints.jmir.org/preprint/25988 [unpublished, peer-reviewed preprint]



JMIR Preprints Benito-León et al

the number of neutrophils at admission are heralding a multiple organ failure in

COVID-19  patients  that  could  lead  to  death.  Our  laboratory  findings  are  in

agreement with other previous studies worldwide.[43-45] 

Although  one  previous  multi-center  study,  based  on  the  analyses  of

demographics,  comorbidities,  vital  signs,  and  laboratory  test  results  upon

admission,  on  the  prediction  of  disease  course  in  COVID-19,  has  been

undertaken,[18] there remains much to learn about applying machine learning

techniques  in  this  novel  infectious  disease.  Comparison  with  that  study  is

difficult, as they have used different variables and techniques. The accuracy of

the model could be influenced by several factors including methods. Feature

extraction methods, feature selection or classification tools, number of subjects,

and demographics are also important considerations. Besides, most COVID-19

diagnostics and prognostic models that have evolved to date have a high risk of

generating bias leading to inequality,[46] mainly due to the high influence of

demographic variables (specially age and sex) in those models and to the non-

blinded nature of the supervised machine-learning approach between predictors

and outcome measures. In fact, our results confirmed that age and sex had a

similar  and  little  discriminant  value  to  separate  the  three  clusters  (table  3).

Nevertheless, the results obtained in our study are in line with most previous

works based on supervised machine-learning techniques in COVID-19.[18, 46]

The study should be interpreted within the context of several limitations.

First,  the  patients  in  the  current  study  may  represent  a  selected  group  of

COVID-19 patients (i.e., patients with a more severe disease since all of them

were admitted to the hospital), and hence it is questionable to what extent our

results could be generalized to the entire COVID-19 population. The reason for
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this was that the extreme circumstances in our hospitals at the peak of this

pandemic permitted only to hospitalize the most severe cases. Notwithstanding,

our  aim  was  to  detect  severity  subgroups  among  COVID-19  patients  upon

admission  to  the  hospital.  Second,  we  only  kept  the  records  (patients),

laboratory tests, and clinical variables from 853 patients from the dataset due to

the high number of missing values in the remaining 1,457 patients. Despite this,

the results have been robust.

In closing, to the authors’ knowledge, the work presented in this paper is

the  first  attempt  to  use  unsupervised  machine  learning  to  identify  severity

subgroups among COVID-19 patients upon admission. A few affordable, simple,

and  standard  laboratory  tests,  which  are  expected  to  be  available  in  any

emergency  department,  have  shown  promising  discriminative  power  for

characterization  of  severity  subgroups  among  COVID-19  patients.  We have

also provided an online severity cluster assignment tool for COVID-19 patients

who are admitted to the emergency department. This could permit to classify

the  patients  according  to  severity  subgroups  and  hence  initiate  earlier

interventions.
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Figure 1.  Hospital stay, outcome measures and laboratory tests that showed

statistically significant differences among clusters with a medium or high effect

size (η2 > 0.06). Note that some variables are scaled (transformation between

brackets) for the sake of graph legibility.
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Hospital stay, outcome measures and laboratory tests that showed statistically significant differences among clusters with a
medium or high effect size (?2 > 0.06). Note that some variables are scaled (transformation between brackets) for the sake of
graph legibility.
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