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While it has been well documented that the clinical severity 
of COVID-19 increases with age (1–5), information is limited 
on how transmission risk varies with demographic factors, 
clinical presentation, and contact type (6–12). Individual-
based interventions such as case isolation, contact tracing 
and quarantine have been shown to accelerate case detection 
and interrupt transmission chains (13). However, these 
interventions are typically implemented in conjunction with 
population-level physical distancing measures, and their 
effect on contact patterns and transmission risk remains 
difficult to separate (14–24). A better understanding of the 
factors driving SARS-CoV-2 transmission is key to achieve 
epidemic control while minimizing societal cost, particularly 
as countries relax physical distancing measures. 

Hunan, a province in China adjacent to Hubei where the 
COVID-19 pandemic began, experienced sustained SARS-
CoV-2 transmission in late January and early February 2020, 
followed by a quick suppression of the outbreak by March 
2020. As in many other provinces in China, epidemic control 
was achieved by layering interventions targeting SARS-CoV-
2 cases and their contacts with population-level physical dis-
tancing measures. In this study, we reconstruct transmission 
chains among all identified SARS-CoV-2 infections in Hunan, 
as of April 3, 2020, based on granular epidemiological 

information collected through extensive surveillance and 
contact tracing efforts. We identify the demographic, clinical 
and behavioral factors that drive transmission heterogenei-
ties and evaluate how interventions modulate the topology of 
the transmission network. Further, we reconstruct the infec-
tiousness profile of SARS-CoV-2 over the course of a typical 
infection and estimate the feasibility of epidemic control by 
individual and population-based interventions. 

We analyze detailed epidemiological records for 1,178 
SARS-CoV-2 infected individuals and their 15,648 close con-
tacts, representing 19,227 separate exposure events, compiled 
by the Hunan Provincial Center for Disease Control and Pre-
vention. Cases were identified between January 16 and April 
3, 2020; primary cases were captured by passive surveillance, 
contact tracing or travel screening and were laboratory con-
firmed by RT-PCR. Individuals who were close contacts of the 
primary cases were followed for at least 2 weeks after the last 
exposure to the infected individual. Prior to February 7, 2020, 
contacts were tested if they developed symptoms during the 
quarantine period. After February 7, 2020, RT-PCR testing 
was required for all contacts, and specimens were collected 
at least once from each contact during quarantine, regardless 
of symptoms. Upon positive RT-PCR test results, infected in-
dividuals were isolated in dedicated hospitals, regardless of 
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requires the synergistic efforts of case isolation, contact quarantine, and population-level interventions, 
owing to the specific transmission kinetics of this virus. 
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their clinical severity, while their contacts were quarantined 
in medical observation facilities. The case ascertainment pro-
cess is visualized in fig. S1. 

The dataset includes 210 epidemiological clusters repre-
senting 831 cases, with additional 347 sporadic cases (29%) 
unlinked to any cluster (see Supplementary Materials & 
Methods for more details). For each cluster, we stochastically 
reconstruct transmission chains and estimate the timing of 
infection most compatible with each patient’s exposure his-
tory. We analyze an ensemble of 100 reconstructed transmis-
sion chains to account for uncertainties in exposure histories 
(Fig. 1 visualizes one realization of the transmission chains, 
while fig. S2A illustrates variability in the topology of the ag-
gregation of 100 realizations transmission chains). 

We observe between 0 and 4 generations of transmission, 
with the largest cluster involving 20 SARS-CoV-2-infected in-
dividuals. The number of secondary infections ranges from 0 
to 10, with a distribution of secondary infections best charac-
terized by a negative binomial distribution with mean 

μ 0.40=  (95% CI, 0.35 to 0.47) and variance ( )μ 1 μ / k 0.96+ =  

(95% CI, 0.74 to 1.26), where 0.30k =  (95% CI, 0.23 to 0.39) 
is the dispersion parameter (Fig. 1). We find that 80% of sec-
ondary infections can be traced back to 15% of SARS-CoV-2 
infected individuals, indicating substantial transmission het-
erogeneities at the individual-level. We can also assess geo-
graphic diffusion within Hunan province and find that the 
great majority of transmission events occur within the same 
prefecture (94.3%, 95%CI, 93.7% to 95.0%), with occasional 
spread between prefectures (5.7%, 95%CI, 5.0% to 6.3%). 
 
Characterizing SARS-CoV-2 transmission heterogenei-
ties at the individual level 
To dissect the individual transmission heterogeneities and 
identify predictors of transmission, we analyze the infection 
risk among a subset of 14,622 individuals who were close con-
tacts of 870 SARS-CoV-2 patients. This dataset excludes pri-
mary cases whose infected contacts report a travel history to 
Wuhan. The dataset represents 74% of all SARS-CoV-2 cases 
recorded in the Hunan patient database. Contacts of these 
870 patients have been carefully monitored, so that 17,750 in-
dependent exposure events have been captured. 

We start by characterizing variation in transmission risk 
across the diverse set of 17,750 exposures. We study how the 
per-contact transmission risk varies with the type of expo-
sures, exposure duration, exposure timing, and physical dis-
tancing intervention, after adjusting for demographic, 
clinical, and travel-related factors. Exposures are grouped 
into 5 categories based on contact type, namely: household, 
extended family, social, community, and healthcare (table 
S2), with the duration of exposure approximated by the time 
interval between the initial and final dates of exposure. To 
gauge the impact of physical distancing on transmission 

risks, we further stratify exposures by the date of occurrence, 
with January 25, 2020 marking the beginning of lockdown in 
Hunan (based on Baidu Qianxi mobility index (25), fig. S3A 
insert). To address putative variation in infectiousness over 
the course of infection, we distinguish whether exposures 
overlap with the date of symptom onset of a primary case, a 
period associated with high viral shedding. We use a mixed 
effects multiple logistic regression model (GLMM-logit) to 
quantify the effects of these factors on the per-contact risk of 
transmission (see table S3 for a detailed definition of all risk 
factors and summary statistics). 

Based on the point estimates of the regression (see fig. 
S3A for regression results), we find that household contacts 
pose the highest risk of transmission, followed by extended 
family, social and community contacts, in agreement with a 
prior study (12). Healthcare contacts have the lowest risk, 
suggesting that adequate protective measures were adopted 
by patients and healthcare staff in Hunan. Interestingly, the 
impact of physical distancing differs by contact type (Table 
1): the risk of transmission in the household increases during 
the lockdown period, likely due to increased contact fre-
quency at home as a result of physical confinement. In con-
trast, the transmission risk decreases for community and 
social contacts during lockdown, possibly due to adoption of 
prudent behaviors such as mask wearing, hand washing and 
coughing/sneezing etiquette. We find that longer exposures 
are riskier, with one additional day of exposure increasing the 
transmission risk by 10% (95% CI, 5% to 15%). Further, trans-
mission risk is higher around the time of symptom presenta-
tion of the primary case (Table 1). In addition, susceptibility 
to infection (defined as the risk of infection given a contact 
with primary case) by age: children aged 0-12 years are sig-
nificantly less susceptible than individuals 26-64 years (odds 
ratio 0.41, 95% CI 0.26 to 0.63); while patients older than 65 
years are significantly more susceptible (odds ratio 1.39, 95% 
CI 1.02 to 1.91). In contrast, we find no statistical support for 
age difference in infectivity (fig. S3A). These results are in 
agreement with previous findings (12, 26, 27). 

For each of the 17,750 contact exposure events, we esti-
mate the probability of transmission using the point estimate 
of the baseline odds and the odds ratios from the GLMM-logit 
regression (fig. S3A). In Fig. 2A, we plot the distribution of 
transmission probabilities for household, extended family, 
social, and community contacts separately. The average per-
contact transmission probability is highest for household 
contacts (7.2%, 95% CI, 1.2% to 19.6%), followed by family 
(1.7%, 95% CI, 0.4% to 5.6%) and social contacts (0.9%, 95% 
CI, 0.2% to 2.7%); while the risk is lowest for community con-
tacts (0.4%, 95% CI, 0.1% to 1.1%). These transmission proba-
bilities reflect the joint effect of duration of exposure (Fig. 
2B), superimposed on differences in transmission risk by type 
of contact (fig. S3A). While confidence intervals on risk 
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estimates are broad, there is statistical support for separating 
out contacts in 5 categories and including a time covariate to 
capture the effect of the lockdown, rather than collapsing the 
contact data into fewer categories (table S4). In contrast, 
there is no statistical support for a more complex model that 
considers a different effect of contact duration by type of con-
tact (table S4). It is worth noting that the per-contact trans-
mission probabilities were estimated in a situation of intense 
interventions and high population awareness of the disease, 
and thus, they may be not generalizable elsewhere. 

The number of contacts is also a key driver of individual 
transmission potential and varies by contact type. Figure 2C 
presents the contact degree distribution, defined as the num-
ber of unique contacts per individual. We find that the distri-
butions of individual contact degree are over-dispersed with 
dispersion parameter 0 1k< <  across all contact types. Fur-
thermore, household ( 0.72)k =  and extended family                    

( 0.64k = ) contacts are less dispersed than social ( 0.19k = ) 
and community ( 0.14)k =  contacts, suggesting that contact 

heterogeneities are inversely correlated with the closeness of 
social interactions. Figure 2D visualizes the age-specific con-
tact patterns between the primary cases and their contacts, 
demonstrating diverse mixing patterns across different types 
of contact. Specifically, household contacts present the ca-
nonical “three-bands” pattern where the diagonal illustrates 
age-assortative interactions and the two off-diagonals repre-
sent inter-generational mixing (28, 29). Other contact types 
display more diffusive mixing patterns by age. We also see 
that among all primary cases, young and middle-aged adults 
have the most social contacts (Fig. 2E). 

Next, we summarize the overall transmission potential of 
an individual by calculating the cumulative contact rate 
(CCR) of all primary cases. The CCR captures how contact op-
portunities vary with demography, temporal variation in the 
infectiousness profile, an individual’s contact degree, and in-
terventions. (See Section 4.3 in Materials and Methods for de-
tailed definition). After adjusting for age, sex, clinical 
presentation, and travel history to Wuhan, we find that phys-
ical distancing measures increase CCRs for household and ex-
tended family contacts and decrease (although not 
statistically significant) CCRs for social and community con-
tacts (Fig. 2E). In contrast, faster case isolation universally 
reduces CCRs, decreasing transmission opportunities across 
all contact types (Fig. 2E). 
 
Characterizing the natural history of SARS-CoV-2 in-
fection by strength of interventions 
We have characterized SARS-CoV-2 transmission risk factors 
and have shown that individual and population-based inter-
ventions have a differential impact on contact patterns and 
transmission potential. Next, we use our probabilistic 

reconstruction of infector-infectee pairs to further dissect 
transmission kinetics and project the impact of interventions 
on SARS-CoV-2 dynamics. Based on the reconstructed trans-
mission chains, we estimate a median serial interval of 5.3 
days, with an inter-quartile range (IQR) of 2.7 to 8.3 days, 
which represents the time interval between symptom onset 
of an infector and his/her infectee (fig. S7, B and D). The me-
dian generation interval, defined as the interval between the 
infection times of an infector and his/her infectee, is 5.3 days, 
with an IQR of 3.1 to 8.7 days (fig. S7, A and C). We estimate 
that 63.4% (95% CI, 60.2% to 67.2%) of all transmission 
events occur before symptom onset, which is comparable 
with findings from other studies (6–8, 10–13, 18, 30, 31). How-
ever, these estimates are impacted by the intensity of inter-
ventions; in Hunan, isolation and quarantine were in place 
throughout the epidemic. 

Case isolation and contact quarantine are meant to pre-
vent potentially infectious individuals from contacting sus-
ceptible individuals, effectively shortening the infectious 
period. As a result, we would expect right censoring of the 
generation and serial interval distributions (32). Sympto-
matic cases represent 86.5% of all SARS-CoV-2 infections in 
our data; among these patients, we observe longer generation 
intervals for cases isolated later in the course of their infec-
tion (Fig. 3A). The median generation interval increases from 
4.0 days (IQR, 1.9 to 7.3 days) for cases isolated 2 day since 
symptom onset, to 7.0 days (IQR, 3.6 to 11.3 days) for those 
isolated more than 6 days after symptom onset (p<0.001, 
Mann-Whitney U test). We observe similar trends for the se-
rial interval distribution (Fig. 3B). The median serial interval 
increases from 1.7 days (IQR, -1.6 to 4.8 days) for cases iso-
lated less than 2 day after symptom onset, to 7.3 days (IQR, 
3.4 to10.8 days) for those isolated more than 6 days after 
symptom onset (p<0.001, Mann-Whitney U test). 

Faster case isolation restricts transmission to the earlier 
stages of infection, thus inflating the contribution of pre-
symptomatic transmission (Fig. 3C). The proportion of pre-
symptomatic transmission is estimated at 87.3% (95% CI, 
79.8% to 93.4%) if cases are isolated within 2 day of symptom 
onset, while this proportion decreases to 47.5% (95% CI, 
41.4% to 53.3%) if cases are isolated more than 6 days after 
symptom onset (p<0.001, Mann-Whitney U test). 

Next, we adjust for censoring due to case isolation and re-
construct the infectiousness profile of a typical SARS-CoV-2 
patient in the absence of interventions. To do so, we charac-
terize changes in the timeliness of case isolation over time in 
Hunan. Figure S8 shows the distributions of time from symp-
tom onset to isolation during three different phases of epi-
demic control, coinciding with major changes in COVID-19 
case definition (Phase I: before Jan. 27th; Phase II: Jan. 27th – 
Feb. 4th; Phase III: after Feb. 4th, fig. S3) (33). In Phase I, 78% 
of cases were detected through passive surveillance; as a 
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result, most cases were isolated after symptom onset (median 
time from onset to isolation 5.4 days, IQR (2.7, 8.2) days, fig. 
S8A). In contrast, in Phase III, 66% of cases were detected 
through active contact tracing, shortening the median time 
from onset to isolation to -0.1 days (IQR (-2.9, 1.8) days, fig. 
S8C). Timeliness of isolation is intermediate in Phase II. We 
use mathematical models (detailed in Materials and Meth-
ods) to dynamically adjust the serial interval distribution for 
censoring, and we apply the same approach to the time inter-
val between a primary case’s symptom onset and onward 
transmission (fig. S10). These censoring-adjusted distribu-
tions can be rescaled by the basic reproduction number 0R  

to reflect the risk of transmission of a typical SARS-CoV-2 
case since the time of infection or since symptom onset (Fig. 
3, D and E). We find that in the absence of interventions, in-
fectiousness peaks near the time of symptoms onset (fig. 
S10D). This is consistent with our regression analysis, where 
the higher risk of transmission is near symptom onset (Table 
1). 
 
Evaluating the impact of individual and population-
based interventions on SARS-CoV-2 transmission 
Next, we use the estimated infectiousness profile of a typical 
SARS-CoV-2 infection (Fig. 3, D and E) to evaluate the impact 
of case isolation on transmission. We first set a baseline re-
production number R0 for SARS-CoV-2 in the absence of con-
trol. Results from a recent study (33) suggest that the initial 
growth rate in Wuhan was 0.15 day−1 in raw case data (95% 
CI, 0.14 to 0.17), although the growth rate could be substan-
tially lower (0.08 day−1) if changes in case definition are con-
sidered. Conservatively, we consider the upper value of the 
growth rate at 0.15 day−1 together with our generation inter-
val distribution adjusted for censoring (fig. S10C), to estimate 
R0. We obtain a baseline reproduction number 0 2.19R =  

(95% CI, 2.08 to 2.36), using the renewal equation framework 
(34). This represents a typical scenario of unmitigated SARS-
CoV-2 transmissibility in an urban setting. The reconstructed 
infectiousness profile in the absence of control is shown in 
solid red lines in Fig. 3, D and E, with respect to time of in-
fection and symptom onset respectively. Notably, we find that 
SARS-CoV-2 infectiousness peaks slightly before symptom 
onset (-0.1 days on average), with 87% of the overall infec-
tiousness concentrated within 5±  days of symptom onset 
and 53% of the overall infectiousness in the pre-symptomatic 
phase (Fig. 3E). 

Next, we evaluate the impact of case isolation on trans-
mission by considering three different intervention scenarios 
mimicking the timeliness of isolation in the three phases of 
the Hunan epidemic control. We further assume that 100% of 
infections are detected and isolated and that isolation is fully 
protective (i.e., there is no onward transmission after the pa-
tient has been isolated/quarantined). The infectiousness 

profiles of the three intervention scenarios are shown in 
dashed lines in Fig. 3, D and E. We find that the basic repro-
duction number decreases in all intervention scenarios, but 
the projected decrease is not sufficient to interrupt transmis-

sion (Fig. 3D, 0 1.75ER =  for Phase I, 0 1.46ER =  for Phase II, 

and 0 1.01ER =  for Phase III). 

We further relax the assumption of 100% case detection 
and isolation and relate changes in the basic reproduction 
number to two independent parameters measuring the 
strength of interventions: the effectiveness of case isolation 
and contact quarantine (measured as the fraction of total in-
fections isolated) and the timeliness of isolation (measured 
as the delay from symptom onset to isolation, phase diagram 
in Fig. 3F). Dashed lines in Fig. 3F illustrate 30%, 40% and 
50% of reduction in 0R . To reduce 0R  by half (the minimum 

amount of transmission reduction required to achieve con-
trol for a baseline 0 ~ 2R ), 100% of infections would need to 

be isolated even if individuals are isolated as early as the day 
of symptom onset. In practice, epidemic control is unrealistic 
if case isolation and quarantine of close contacts are the only 
measures in place. 

Our data support that case isolation and quarantine of 
close contacts are effective in reducing SARS-CoV-2 transmis-
sion, especially if these interventions occur early in the infec-
tion. To achieve epidemic control, however, these 
interventions need to be layered with additional population-
level measures, including increased teleworking, reduced op-
eration in the service industry, or broader adoption of face 
masks. The synergistic effects of these interventions are illus-
trated in Fig. 3G. We find that a 30% reduction in transmis-
sion from population-level measures would require a 70% 
case detection rate to achieve epidemic control, assuming 
that cases can be promptly isolated on average upon symp-
tom presentation. Of note, a 30% reduction in transmission 
could also encompass the benefits of residual population-
level immunity from the first wave of COVID-19, especially in 
hard-hit regions (35, 36). As a sensitivity analysis, we further 
consider a more optimistic scenario with a lower baseline 

0 1.56R = , corresponding to an epidemic growth rate of 0.08 

day−1 (95% CI, 0.06 to 0.10) in Wuhan (33), which is adjusted 
for reporting changes. As expected, control is much easier to 
achieve in this scenario: if detected SARS-CoV-2 infections 
are effectively isolated on average 2 days after symptom on-
set, a 25% population-level reduction in transmission coupled 
with a 42% infection isolation rate is sufficient to achieve con-
trol (Fig. 3H). 
 
Discussion 
Detailed information on 1,178 SARS-CoV-2 infected individu-
als along with their 15,648 contacts has allowed us to dissect 
the behavioral and clinical drivers of SARS-CoV-2 
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transmission; to evaluate how transmission opportunities are 
modulated by individual and population-level interventions, 
and to characterize the typical infectiousness profile of a case. 
Informed by this understanding, particularly the importance 
of pre-symptomatic transmission, we have evaluated the 
plausibility of SARS-CoV-2 control through individual and 
population-based interventions. 

Healthcare contacts pose the lowest risk of transmission 
in Hunan, suggesting that adequate protective measures 
against SARS-CoV-2 were taken in hospitals and medical ob-
servation centers (Table 1). The average risk of transmission 
scales positively with the closeness of social interactions: the 
average per-contact risk is lowest for community exposures 
(including contacts in the public transportation system and 
at food and entertainment venues), intermediate for social 
and extended family contacts, and highest in the household. 
The average transmission risk in the household is further el-
evated when intense physical distancing is enforced, and for 
contacts that last longer. These lines of evidence support that 
SARS-CoV-2 transmission is facilitated by close proximity, 
confined environment, and high frequency of contacts. 

Regression analysis indicates a higher risk of transmis-
sion when an individual is exposed to a SARS-CoV-2 patient 
around the time of symptom onset, in line with our recon-
structed infectiousness profile. These epidemiological find-
ings are in agreement with viral shedding studies (6, 37–40). 
We estimate that overall in Hunan, 63% of all transmission 
events were from pre-symptomatic individuals, in concord-
ance with other modeling studies (6, 7, 10, 12, 41). However, 
the estimated pre-symptomatic proportion is affected by 
case-based measures, including case isolation and contact 
quarantine. We estimate that the relative contribution of pre-
symptomatic transmission drops to 52% in an uncontrolled 
scenario where case-based interventions are absent. 

Case isolation reduces the “effective” infectious period of 
SARS-CoV-2 infected individuals by blocking contacts with 
susceptible individuals. We observe that faster isolation sig-
nificantly reduces cumulative contact rates (CCRs) across 
contact types (Fig. 2E). We also observe shorter serial and 
generation intervals and a larger fraction of pre-symptomatic 
transmission when individuals are isolated faster (Fig. 3, A to 
C). In contrast, population-level physical distancing measures 
have differential impacts on CCRs, decreasing CCRs for social 
and community contacts, while increasing CCRs in the house-
hold and family contacts. As a result, strict physical distanc-
ing confines the epidemic mostly to families and households 
(see also fig. S7). The precise impact of physical distancing on 
transmission is difficult to separate from that of individual-
based interventions. However, our analysis suggests that 
physical distancing changes the topology of the transmission 
network by affecting the number and duration of interac-
tions. Interestingly, the topology of the household contact 

network is highly clustered (42), and theoretical studies have 
shown that high clustering hinders epidemic spread (43, 44). 
These higher-order topological changes could contribute to 
reducing transmission beyond the effects expected from an 
overall reduction in CCRs. In parallel, the effectiveness of 
physical distancing measures on reducing COVID-19 trans-
mission has been demonstrated in empirical data from China 
(24, 45) and elsewhere (46). 

We have explored the feasibility of SARS-CoV-2 epidemic 
control against two important metrics related to case isola-
tion and contact quarantine: the timeliness of isolation and 
the infection detection rate (Fig. 3F). For a baseline transmis-
sion scenario compatible with the initial growth phase of the 
epidemic in Wuhan, we find that epidemic control solely re-
lying on isolation and quarantine is difficult to achieve. Lay-
ering these interventions with moderate physical distancing 
makes control more likely over a range of plausible parame-
ters - a situation that could be further improved by residual 
immunity from the first wave of SARS-CoV-2 activity (35, 36). 
Successful implementation of contact tracing requires a low-
level of active infections in the community, as the number of 
contacts to be monitored is several folds the number of infec-
tions (~13 contacts were traced for each SARS-CoV-2 infected 
individual in Hunan). The timing of easing of lockdown 
measures should align with the capacities of testing and con-
tact tracing efforts, relative to the number of active infections 
in the community. In parallel, technology-based approaches 
can also facilitate these efforts (7, 47). 

Overall, we find that case isolation and quarantine suc-
cessfully blocked transmission to close contacts in Hunan, 
with an estimated 4.3% of transmission occurring after SARS-
CoV-2 patients were isolated. In this setting, all SARS-CoV-2 
infections were managed under medical isolation in dedi-
cated hospitals regardless of clinical severity, while contacts 
were quarantined in designated medical observation centers. 
Self-regulated isolation and quarantine at home, however, 
may not be as effective and a higher proportion of onward 
transmission should be expected. 

Several caveats are worth noting. We could not evaluate 
the risk of transmission in schools, workplaces, conferences, 
prisons, or factories, as no contacts in these settings were re-
ported in the Hunan dataset. Our study is likely underpow-
ered to assess the transmission potential of asymptomatic 
individuals given the relatively small fraction of these infec-
tions in our data (13.5% overall and 22.1% of infections cap-
tured through contact tracing). There is no statistical support 
for decreased transmission from asymptomatic individuals 
(fig. S3A), although we observe a positive, but non-significant 
gradient in average transmission risk with disease severity. 
Evidence from viral shedding studies is conflicting; viral load 
appears independent of clinical severity in some studies (6, 
22, 38, 48) while others suggest faster viral clearance in 
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asymptomatic individuals (49). 
Another limitation relates to changes in testing practices 

for contacts of primary cases. Testing was initially limited to 
contacts exhibiting symptoms, and this condition was relaxed 
after February 7th. The early testing scheme may lead to un-
derestimation of susceptibility in children, as younger indi-
viduals are less likely to develop SARS-CoV-2 symptoms (50). 
However, reassuringly, sensitivity analyses indicate that the 
age gradient of susceptibility is preserved even after stratifi-
cation for changes in testing protocol. Further, our finding of 
lower susceptibility to infection among children under 12 
years, relative to adults, remains stable in the period with 
comprehensive testing (fig. S4). Overall, the contribution of 
asymptomatic infections to transmission remains debated 
but has profound implications on the feasibility of control 
through individual-based interventions. Careful serological 
studies combined with virologic testing in households and 
other controlled environments are needed to fully resolve the 
role of asymptomatic infections and viral shedding on trans-
mission. 

In conclusion, detailed contact tracing data illuminate im-
portant heterogeneities in SARS-CoV-2 transmission driven 
by biology and behavior, modulated by the impact of inter-
ventions. Crucially, and in contrast to SARS-CoV-1, the ability 
of SARS-CoV-2 to transmit during the host’s pre-symptomatic 
phase makes it particularly difficult to achieve epidemic con-
trol (51). Our risk factor estimates can provide useful evidence 
to guide the design of more targeted and sustainable mitiga-
tion strategies, while our reconstructed transmission kinetics 
will help calibrate further modeling efforts. 
 
Materials and methods summary 
We combined individual-level data on 1,178 SARS-CoV-2 in-
fections with detailed diaries of exposures collected through 
contact tracing efforts in Hunan, China, to stochastically re-
construct transmission chains and infer infection times. Re-
constructed transmission chains had to be compatible with 
highly resolved individual level data on symptom onset dates, 
daily records of exposure to infected contacts, and travel his-
tory to high-risk regions. Based on the reconstructed trans-
mission chains, we characterize the distribution of key SARS-
CoV-2 transmission parameters, including the number of sec-
ondary cases, the generation and serial intervals, and the in-
terval from infection or symptom onset to isolation, at 
different stages of the epidemic. To further understand the 
drivers of transmission heterogeneity and the dispersion in 
the number of secondary cases, we study the degree distribu-
tion of SARS-CoV2 infected individuals, the duration of expo-
sures, and the age specific contact patterns between infectors 
and infectees, separately by contact type (household, family, 
community, transportation, healthcare). We also use logistic 
regression analysis to model the per-contact risk of 

transmission, with contact type and duration, symptoms, de-
mographic factors, and different periods of the outbreak as 
covariates. Missing data are addressed through multivariate 
imputation algorithms. We conduct sensitivity analyses to 
test the robustness of regression results. 

We next use our data to model the synergistic effects of 
case-based and population-level interventions on transmis-
sion. We reconstruct the average infectiousness profile of a 
SARS-CoV-2 infection, after adjusting for the truncation ef-
fects of case isolation. Based on the estimated infectiousness 
profile, we use mathematical models to estimate the effect of 
layered interventions on transmission (measured as changes 
in the effective reproduction number). We consider different 
intensities of population-level physical distancing, case detec-
tion, and timeliness of isolation/quarantine. A full descrip-
tion of the Materials and Methods is provided in the 
Supplementary Material. 
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Fig. 1. SARS-CoV-2 transmission chains. Top: One realization of the 
reconstructed transmission chains among 1,178 SARS-CoV-2 infected 
individuals in Hunan province. Each node in the network represents a 
patient infected with SARS-CoV-2 and each link represents an infector-
infectee relationship. The color of the node denotes the reporting prefecture 
of infected individuals. Bottom: Distribution of the number of secondary 
infections; blue bars represent the ensemble averaged across 100 
stochastic samples of the reconstructed transmission chains. Orange bars 
represent the best fit of a negative binomial distribution to the ensemble 
average. Vertical lines indicate 95% confidence intervals across 100 
samples (of both data and the models’ fitting results). Some confidence 
intervals are narrow and not visible on the plot. For sensitivity analysis, we 
also fit the distribution with geometric and Poisson distribution. Based on 
the Akaike information criterion, the negative binomial distribution fit the 
data the best (average AIC score for negative binomial distribution: 1902; 
for geometric distribution: 1981, for Poisson distribution: 2259). 
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Fig. 2. Heterogeneity in contact rates of SARS-CoV-2 cases and impact of interventions, by contact type. 
Columns from left to right represent community contacts (public transportation, food and entertainment), 
social contacts, extended family contacts, and household contacts. (A) Violin plots representing the distribution 
of per-contact transmission probability by contact type, adjusted for all other covariates in fig. S3 (probability 
expressed in percentage, x-axis). (B) Complementary cumulative distribution function (CCDF, y axis) for 
duration of exposure (i.e., the probability that exposure is longer or equal to a certain value). Dashed vertical 
lines indicate average values. Household contacts last the longest, and as expected contact duration decreases 
as social ties loosen. (C) The distribution of the number of unique contacts (degree distribution) of the primary 
cases for each contact types. PMF on the y axis is acronym for probability mass function. The dashed vertical 

lines indicate average values. The dispersion parameter k  is calculated based on the relationship 2

1 / k
µσ
µ

=
+

, 

where µ  and 2σ  are mean and variance of the number of unique contacts. 1k <  indicates over-dispersion. (D) 
Age distribution of SARS-CoV-2 case-contact pairs (contact matrices). (E) Rate ratios of negative binomial 
regression of the cumulative contact rates (CCRs) against predictors including the infector’s age, sex, presence 
of fever/cough, Wuhan travel history, whether symptom onset occurred before social distancing was in place 
(before or after Jan. 25, 2020), and time from isolation to symptom onset. CCRs represent the sum of relevant 
contacts over a one-week window centered at the date of the primary case’s symptom onset. Dots and lines 
indicate point estimates and 95% confidence interval of the rate ratios, numbers below the dots indicate the 
numerical value of the point estimates; Ref. stands for reference category; * indicates p-value<0.05, ** indicates 
p-value<0.01, *** indicates p-value<0.001. 
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Fig. 3. The impact of interventions on SARS-CoV-2 transmission dynamics. (A) Violin plot of the generation 
interval distributions stratified by time from symptom onset to isolation/pre-symptomatic quarantine, based on 
an ensemble of 100 realizations of the sampled transmission chains. (B) Same as A but for the serial interval 
distributions (C) Same as A but for the fraction of pre-symptomatic transmission, among all transmission 
events, with vertical line indicating 50% of pre-symptomatic transmission. Dots represent the mean and 
whiskers represents minimum and maximum. (D) Estimated average (over 100 realizations of sampled 
transmission chains) transmission risk of a SARS-CoV-2 infected individual since time of infection under four 
intervention scenarios: the red solid line represents an uncontrolled epidemic scenario modeled after the early 
epidemic dynamics in Wuhan before lockdown; the dashed lines represent scenarios where quarantine and case 
isolation are in place and mimic Phase I, II, and III of epidemic control in Hunan. The shapes of these curves 
match that of the generation interval distributions in each scenario while the areas under the curve are equal to 
the ratio of the baseline/effective basic reproduction numbers ( 0 0/ ER R s). (E) Same as in D but with time since 
symptom onset on the x-axis (colors are as in (D)). The vertical line represents symptom onset. (F) Reduction 
(percentage) in the basic reproduction number as a function of mean time from symptom onset (or from peak 
infectiousness for asymptomatic cases) to isolation isoτ  (x-axis) and fraction of SARS-CoV-2 infections being 

isolated (y-axis). The distribution of onset to isolation follows a normal distribution with mean isoτ  and standard 
deviation of 2 days. The dashed lines indicate 30%, 40% and 50% reductions in R0 under interventions. (G) 
Effective basic reproduction number as a function of population-level reduction in contact rates (i.e., through 
physical distancing, expressed as a percentage, x-axis) and isolation rate (fraction of total infections detected 
and further isolated). We assume baseline basic reproduction number 0 2.19R = , and a normal distribution for 
the distribution from onset to isolation with mean of 0 days and standard deviation of 2 days. The dashed line 
represents the epidemic threshold 1ER = . The blue area indicates region below the epidemic threshold (namely, 
controlled epidemic) and the red area indicates region above the epidemic threshold. (H) Same as in G but 
assuming 0 1.57R =  (a more optimistic estimate of R0 in Wuhan adjusted for reporting changes), and a normal 
distribution for the distribution from onset to isolation with mean of 2 days and standard deviation of 2 days. 
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Table 1. SARS-CoV-2 transmission risk in Hunan by contact type, duration of exposure, and whether the exposure 
window contains the date of symptom onset of the primary case - a period of intense viral shedding. Risk is further 
stratified by the date of implementation of social distancing interventions in Hunan, which is 01/25/2020. The regres-
sion model is adjusted for demographic characteristics of the cases and their contacts, clinical symptoms, and travel 
history. Details are provided in the Material and Methods, while the full results of the regression including additional 
risk factors are shown in fig. S3. * indicates p-value<0.05, ** indicates p-value<0.01, *** indicates p-value<0.001. 
 

Risk factors Odds ratio 95% CI 

Household contacts 

Before 01/25/2020 2.20*** (1.39, 3.49) 

After 01/25/2020 3.79*** (2.47, 5.79) 

Extended Family contacts 

Before 01/25/2020 1.00 Reference 

After 01/25/2020 0.94 (0.60, 1.46) 

Social contacts 

Before 01/25/2020 0.63 (0.37, 1.06) 

After 01/25/2020 0.41** (0.21, 0.78) 

Community contacts 

Before 01/25/2020 0.37** (0.19, 0.74) 

After 01/25/2020 0.20* (0.05, 0.71) 

Healthcare contacts 

Before 01/25/2020 0.15* (0.03, 0.68) 

After 01/25/2020 0.10* (0.01, 0.90) 

Duration of exposure (days) 1.10*** (1.05, 1.15) 

Symptom onset within exposure window (Yes) 1.49* (1.09, 2.04) 

 
       

 on N
ovem

ber 30, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://www.sciencemag.org/
http://science.sciencemag.org/


Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2

Huang, Qianlai Sun, Ziyan Liu, Maria Litvinova, Alessandro Vespignani, Marco Ajelli, Cécile Viboud and Hongjie Yu
Kaiyuan Sun, Wei Wang, Lidong Gao, Yan Wang, Kaiwei Luo, Lingshuang Ren, Zhifei Zhan, Xinghui Chen, Shanlu Zhao, Yiwei

published online November 24, 2020

ARTICLE TOOLS http://science.sciencemag.org/content/early/2020/11/23/science.abe2424

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2020/11/23/science.abe2424.DC1

REFERENCES

http://science.sciencemag.org/content/early/2020/11/23/science.abe2424#BIBL
This article cites 50 articles, 8 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science.

on N
ovem

ber 30, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/content/early/2020/11/23/science.abe2424
http://science.sciencemag.org/content/suppl/2020/11/23/science.abe2424.DC1
http://science.sciencemag.org/content/early/2020/11/23/science.abe2424#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

	Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2

