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Worldwide, governments have mobilized resources to fight 
the COVID-19 pandemic. A wide range of nonpharmaceutical 
interventions (NPIs) has been deployed, including stay-at-
home orders and the closure of all nonessential businesses. 
Recent analyses show that these large-scale NPIs were jointly 
effective at reducing the virus’ effective reproduction number 
(1), but it is still largely unknown how effective individual 
NPIs were. As more data become available, we can move be-
yond estimating the combined effect of a bundle of NPIs and 
begin to understand the effects of individual interventions. 
This can help governments efficiently control the epidemic, 
by focusing on the most effective NPIs to ease the burden put 
on the population. 

A promising way to estimate NPI effectiveness is data-
driven, cross-country modeling: inferring effectiveness by re-
lating the NPIs implemented in different countries to the 
course of the epidemic in these countries. To disentangle the 
effects of individual NPIs, we need to leverage data from mul-
tiple countries with diverse sets of interventions in place. Pre-
vious data-driven studies (table S8) estimate effectiveness for 
individual countries (2–4) or NPIs, although some exceptions 

exist [(1, 5–8); summarized in table S7]. In contrast, we eval-
uated the impact of several NPIs on the epidemic’s growth in 
34 European and seven non-European countries. If all coun-
tries implemented the same set of NPIs on the same day, the 
individual effect of each NPI would be unidentifiable. How-
ever, the COVID-19 response was far less coordinated: coun-
tries implemented different sets of NPIs, at different times, 
in different orders (Fig. 1). 

Even with diverse data from many countries, estimating 
NPI effects remains a challenging task. First, models are 
based on uncertain epidemiological parameters; our NPI ef-
fectiveness study incorporates some of this uncertainty di-
rectly in the model. Second, the data are retrospective and 
observational, meaning that unobserved factors could con-
found the results. Third, NPI effectiveness estimates can be 
highly sensitive to arbitrary modeling decisions, as shown by 
two recent replication studies (9, 10). Fourth, large-scale pub-
lic NPI datasets suffer from frequent inconsistencies (11) and 
missing data (12). Hence, the data and the model must be 
carefully validated if they are to be used to guide policy deci-
sions. We have collected a large public dataset on NPI 
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Governments are attempting to control the COVID-19 pandemic with nonpharmaceutical interventions 
(NPIs). However, the effectiveness of different NPIs at reducing transmission is poorly understood. We 
gathered chronological data on the implementation of NPIs for several European, and other, countries 
between January and the end of May 2020. We estimate the effectiveness of NPIs, ranging from limiting 
gathering sizes, business closures, and closure of educational institutions to stay-at-home orders. To do so, 
we used a Bayesian hierarchical model that links NPI implementation dates to national case and death 
counts and supported the results with extensive empirical validation. Closing all educational institutions, 
limiting gatherings to 10 people or less, and closing face-to-face businesses each reduced transmission 
considerably. The additional effect of stay-at-home orders was comparatively small. 
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implementation dates that has been validated by independ-
ent double entry, and extensively validated our effectiveness 
estimates. This is a crucial, but often absent or incomplete, 
element of COVID-19 NPI effectiveness studies (10). 

Our results provide insight on the amount of COVID-19 
transmission associated with various areas and activities of 
public life, such as gatherings of different sizes. Therefore, 
they may inform the packages of interventions that countries 
implement to control transmission in current and future 
waves of infections. However, we need to be careful when in-
terpreting this study’s results. We only analyzed the effect 
NPIs had between January and the end of May 2020, and NPI 
effectiveness may change over time as circumstances change. 
Lifting an NPI does not imply that transmission will return 
to its original level and our window of analysis does not in-
clude relaxation of NPIs. These and other limitations are de-
tailed in the Discussion section. 
 
Cross-country NPI effectiveness modeling 
We analyzed the effects of seven commonly used NPIs be-
tween the 22nd of January and the 30th of May 2020. All 
NPIs aimed to reduce the number of contacts within the pop-
ulation (Table 1). If a country lifted an NPI before the 30th of 
May, the window of analysis for that country terminates on 
the day of the lifting (see Methods). To ensure high data qual-
ity, all NPI data were independently entered by two of the 
authors (independent double entry) using primary sources, 
and then manually compared with several public datasets. 
Data on confirmed COVID-19 cases and deaths were taken 
from the Johns Hopkins CSSE COVID-19 Dataset (13). The 
data used in this study, including sources, are available 
online on GitHub (14). 

We estimated the effectiveness of NPIs with a Bayesian 
hierarchical model. We used case and death data from each 
country to infer the number of new infections at each point 
in time, which is itself used to infer the (instantaneous) re-
production number Rt over time. NPI effects were then esti-
mated by relating the daily reproduction numbers to the 
active NPIs, across all days and countries. This relatively sim-
ple, data-driven approach allowed us to sidestep assumptions 
about contact patterns and intensity, infectiousness of differ-
ent age groups, and so forth, that are typically required in 
modeling studies. It also allowed us to directly model many 
sources of uncertainty, such as uncertain epidemiological pa-
rameters, differences in NPI effectiveness between countries, 
unknown changes in testing and infection fatality rates, and 
the effect of unobserved influences on Rt. The code is availa-
ble online on GitHub (14). 
 
Effectiveness of individual NPIs 
Our model enabled us to estimate the individual effectiveness 
of each NPI, expressed as a percentage reduction in Rt. We 

quantified uncertainty with Bayesian prediction intervals, 
which are wider than standard credible intervals. These re-
flect differences in NPI effectiveness across countries among 
several other sources of uncertainty. Bayesian prediction in-
tervals are analogous to the standard deviation of the effec-
tiveness across countries, rather than the standard error of 
the mean effectiveness. Under the default model settings, the 
percentage reduction in Rt (with 95% prediction interval; Fig. 
2) associated with each NPI was: limiting gatherings to 1000 
people or less: 23% (0 to 40%); to 100 people or less: 34% (12 
to 52%); to 10 people or less: 42% (17 to 60%); closing some 
high-risk face-to-face businesses: 18% (−8 to 40%); closing 
most nonessential face-to-face businesses: 27% (−3 to 49%); 
closing both schools and universities in conjunction: 38% (16 
to 54%); and issuing stay-at-home orders (additional effect on 
top of all other NPIs): 13% (−5 to 31%). Note that we were not 
able to robustly disentangle the individual effects of closing 
schools and closing universities since these NPIs were imple-
mented on the same day or in close succession in most coun-
tries [except Iceland and Sweden, where only universities 
were closed (see also fig. S21)]. We thus reported “schools and 
universities closed in conjunction” as one NPI. 

Some NPIs frequently co-occurred, i.e., were partly collin-
ear. However, we were able to isolate the effects of individual 
NPIs since the collinearity was imperfect and our dataset 
large. For every pair of NPIs, we observed one without the 
other for 504 country-days on average (table S5). The mini-
mum number of country-days for any NPI pair is 148 (for lim-
iting gatherings to 1000 or 100 attendees). Additionally, 
under excessive collinearity, and insufficient data to over-
come it, individual effectiveness estimates would be highly 
sensitive to variations in the data and model parameters (15). 
Indeed, high sensitivity prevented Flaxman et al. (1), who had 
a smaller dataset, from disentangling NPI effects (9). In con-
trast, our effectiveness estimates are substantially less sensi-
tive (see below). Finally, the posterior correlations between 
the effectiveness estimates are weak, further suggesting man-
ageable collinearity (fig. S22). 
 
Effectiveness of NPI combinations 
Although the correlations between the individual estimates 
were weak, we took them into account when evaluating com-
bined NPI effectiveness. For example, if two NPIs frequently 
co-occurred, there may be more certainty about the combined 
effectiveness than about the effectiveness of each NPI indi-
vidually. Figure 3 shows the combined effectiveness of the 
sets of NPIs that are most common in our data. In combina-
tion, the NPIs in this study reduced Rt by 77% (67 to 85%). 
Across countries, the mean Rt without any NPIs (i.e., the R0) 
was 3.3 (table S4). Starting from this number, the estimated 
Rt likely could have been brought below 1 by closing schools 
and universities, high-risk businesses, and limiting gathering 
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sizes to at most 10. Readers can interactively explore the ef-
fects of sets of NPIs with our online mitigation calculator (16). 
A CSV file containing the joint effectiveness of all NPI com-
binations is available online (14). 
 
Sensitivity and validation 
We performed a range of validation and sensitivity experi-
ments (figs. S2 to S19). First, we analyzed how the model ex-
trapolated to countries that did not contribute data for fitting 
the model, and found that it could generate calibrated fore-
casts for up to 2 months, with uncertainty increasing over 
time. Multiple sensitivity analyses showed how the results 
changed when we modified the priors over epidemiological 
parameters, excluded countries from the dataset, used only 
deaths or confirmed cases as observations, varied the data 
preprocessing, and more. Finally, we tested our key assump-
tions by showing results for several alternative models [struc-
tural sensitivity (10)] and examined possible confounding of 
our estimates by unobserved factors influencing Rt. In total, 
we considered NPI effectiveness under 206 alternative exper-
imental conditions (Fig. 4A). Compared with the results ob-
tained under our default settings (Figs. 2 and 3), median NPI 
effectiveness varied under alternative plausible experimental 
conditions. However, the trends in the results are robust, and 
some NPIs outperformed others under all tested conditions. 
While we tested large ranges of plausible values, our experi-
ments did not include every possible source of uncertainty. 

We categorized NPI effects into small, moderate, and 
large, which we define as a posterior median reduction in Rt 
of less than 17.5%, between 17.5 and 35%, and more than 35% 
(vertical lines in Fig. 4). Four of the NPIs fell into the same 
category across a large fraction of experimental conditions: 
closing both schools and universities was associated with a 
large effect in 96% of experimental conditions, and limiting 
gatherings to 10 people or less had a large effect in 99% of 
conditions. Closing most nonessential businesses had a mod-
erate effect in 98% of conditions. Issuing stay-at-home orders 
(i.e., in addition to the other NPIs) fell into the “small effect” 
category in 96% of experimental conditions. Three NPIs fell 
less clearly into one category: Limiting gatherings to 1000 
people or less had a moderate-to-small effect (moderate in 
81% of conditions) while limiting gatherings to 100 people or 
less had a moderate-to-large effect (moderate in 66% of con-
ditions). Finally, closing some high-risk businesses, including 
bars, restaurants, and nightclubs had a moderate-to-small ef-
fect (moderate in 58% of conditions). Limiting gatherings to 
1000 people or less was the NPI with the highest variation in 
median effectiveness across the experimental conditions (Fig. 
4A), which may reflect the NPI’s partial collinearity with lim-
iting gatherings to 100 people or less. 

Aggregating all sensitivity analyses can hide sensitivity to 
specific assumptions. We display the median NPI effects in 

four categories of sensitivity analyses (Fig. 4, B to E), and each 
individual sensitivity analysis is shown in the supplementary 
materials. The trends in the results are also stable within 
these categories. 
 
Discussion 
We used a data-driven approach to estimate the effects that 
seven nonpharmaceutical interventions had on COVID-19 
transmission in 41 countries between January and the end of 
May 2020. We found that several NPIs were associated with 
a clear reduction in Rt, in line with mounting evidence that 
NPIs are effective at mitigating and suppressing outbreaks of 
COVID-19. Furthermore, our results indicate that some NPIs 
outperformed others. While the exact effectiveness estimates 
vary with modeling assumptions, the broad conclusions dis-
cussed below are largely robust across 206 experimental con-
ditions in 11 sensitivity analyses. 

Business closures and gathering bans both seem to have 
been effective at reducing COVID-19 transmission. Closing 
most nonessential face-to-face businesses was only somewhat 
more effective than targeted closures, which only affected 
businesses with high infection risk, such as bars, restaurants, 
and nightclubs (see also Table 1). Therefore, targeted busi-
ness closures can be a promising policy option in some cir-
cumstances. Limiting gatherings to 10 people or less was 
more effective than limits of up to 100 or 1000 people and 
had a more robust effect estimate. Note that our estimates 
are derived from data between January and May 2020, a pe-
riod when most gatherings were likely indoors due to 
weather. 

Whenever countries in our dataset introduced stay-at-
home orders, they essentially always also implemented, or al-
ready had in place, all other NPIs in this study. We accounted 
for these other NPIs separately and isolated the effect of or-
dering the population to stay at home, in addition to the ef-
fect of all other NPIs. In accordance with other studies that 
took this approach (2, 6), we found that issuing a stay-at-
home order had a small effect when a country had already 
closed educational institutions, closed nonessential busi-
nesses, and banned gatherings. In contrast, Flaxman et al. (1) 
and Hsiang et al. (3) included the effect of several NPIs in the 
effectiveness of their stay-at-home order (or “lockdown”) 
NPIs and accordingly found a large effect for this NPI. Our 
finding suggests that some countries may have been able to 
reduce Rt to below 1 without a stay-at-home order (Fig. 3) by 
issuing other NPIs. 

We found a large effect for closing schools and universi-
ties in conjunction, which was remarkably robust across dif-
ferent model structures, variations in the data, and 
epidemiological assumptions (Fig. 4). It remained robust 
when controlling for NPIs excluded from our study (fig. S9). 
Our approach cannot distinguish direct effects on 
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transmission in schools and universities from indirect effects, 
such as the general population behaving more cautiously af-
ter school closures signaled the gravity of the pandemic. Ad-
ditionally, since school and university closures were 
implemented on the same day, or in close succession in most 
of the countries we study, our approach cannot distinguish 
their individual effects (fig. S21). This limitation likely also 
holds for other observational studies that do not include data 
on university closures and estimate only the effect of school 
closures (1–3, 5–8). Furthermore, our study does not provide 
evidence on the effect of closing preschools and nurseries. 

Previous evidence on the role of pupils and students in 
transmission is mixed. Although infected young people (aged 
ca. 12 to 25) are often asymptomatic, they appear to shed sim-
ilar amounts of virus as older people (17, 18), and might there-
fore infect higher-risk individuals. Early data suggested that 
children and young adults had a notably lower observed in-
cidence rate than older adults—whether this was due to 
school and university closures remains unknown (19–22). In 
contrast, the recent resurgence of cases in European coun-
tries has been concentrated in the age group corresponding 
to secondary school and higher education (especially the lat-
ter), and is now spreading to older age groups as well as pri-
mary-school-aged children (23, 24). Primary schools may be 
generally less affected than secondary schools (20, 25–28), 
perhaps partly because children under the age of 12 are less 
susceptible to SARS-CoV-2 (29). 

Our study has several limitations. First, NPI effectiveness 
may depend on the context of implementation, such as the 
presence of other NPIs, country demographics, and specific 
implementation details. Our results thus need to be inter-
preted as the effectiveness in the contexts in which the NPI 
was implemented in our data (10). For example, in a country 
with a comparatively old population, the effectiveness of clos-
ing schools and universities would likely have been on the 
lower end of our prediction interval. Expert judgement 
should thus be used to adjust our estimates to local circum-
stances. Second, Rt may have been reduced by unobserved 
NPIs or voluntary behavior changes such as mask-wearing. 
To investigate whether the effect of these potential confound-
ers could be falsely attributed to the observed NPIs, we per-
formed several additional analyses and found that our results 
are stable to a range of unobserved factors (fig. S9). However, 
this sensitivity check cannot provide certainty and investigat-
ing the role of unobserved factors is an important topic to 
explore further. Third, our results cannot be used without 
qualification to predict the effect of lifting NPIs. For example, 
closing schools and universities in conjunction seems to have 
greatly reduced transmission, but this does not mean that re-
opening them will necessarily cause infections to soar. Edu-
cational institutions can implement safety measures such as 
reduced class sizes as they reopen. However, the nearly 

40,000 confirmed cases associated with universities in the 
UK since they reopened in September 2020 show that educa-
tional institutions may still play a large role in transmission, 
despite safety measures (30). Fourth, we do not have data on 
some promising interventions, such as testing, tracing, and 
case isolation. These interventions could become an im-
portant part of a cost-effective epidemic response (31), but we 
did not include them because it is difficult to obtain compre-
hensive data on their implementation. In addition, although 
the data are more readily available, it is difficult to estimate 
the effect of mask-wearing in public spaces because there was 
limited public life as a result of other NPIs. We discuss fur-
ther limitations in the supplementary text, section E. 

Although our work focused on estimating the impact of 
NPIs on the reproduction number Rt, the ultimate goal of gov-
ernments may be to reduce the incidence, prevalence, and ex-
cess mortality of COVID-19. For this, controlling Rt is 
essential, but the contribution of NPIs toward these goals 
may also be mediated by other factors, such as their duration 
and timing (32), periodicity and adherence (33, 34), and suc-
cessful containment (35). While each of these factors ad-
dresses transmission within individual countries, it can be 
crucial to additionally synchronize NPIs between countries, 
since cases can be imported (36). 

Many governments around the world seek to keep Rt be-
low 1 while minimizing the social and economic costs of their 
interventions. Our work offers insights into which areas of 
public life are most in need of virus containment measures so 
that activities can continue as the pandemic develops; how-
ever, our estimates should not be taken as the final word on 
NPI effectiveness. 
 
Materials and methods 
 
Dataset 
We analyzed the effects of NPIs (Table 1) in 41 countries (37) 
(see Fig. 1). We recorded NPI implementations when the 
measures were implemented nationally or in most regions of 
a country (affecting at least three-fourths of the population). 
We only recorded mandatory restrictions, not recommenda-
tions. Supplementary text section G details how edge cases in 
the data collection were handled. For each country, the win-
dow of analysis starts on the 22nd of January and ends after 
the first lifting on an NPI, or on the 30th of May 2020, which-
ever was earlier. The reason to end the analysis after the first 
major reopening (38) was to avoid a distribution shift. For 
example, when schools reopened, it was often with safety 
measures, such as smaller class sizes and distancing rules. It 
is therefore expected that contact patterns in schools will 
have been different before school closure compared to after 
reopening. Modeling this difference explicitly is left for future 
work. Data on confirmed COVID-19 cases and deaths were 

on D
ecem

ber 20, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://www.sciencemag.org/
http://science.sciencemag.org/


First release: 15 December 2020  www.sciencemag.org  (Page numbers not final at time of first release) 5 
 

taken from the Johns Hopkins CSSE COVID19 Dataset (13). 
The data used in this study, including sources, are available 
online on GitHub (14). 
 
Data collection 
We collected data on the start and end date of NPI implemen-
tations, from the start of the pandemic until the 30th of May 
2020. Before collecting the data, we experimented with sev-
eral public NPI datasets, finding that they were not complete 
enough for our modeling and contained incorrect dates (39). 
By focusing on a smaller set of countries and NPIs than these 
datasets, we were able to enforce strong quality controls: We 
used independent double entry and manually compared our 
data to public datasets for cross-checking. 

First, two authors independently researched each country 
and entered the NPI data into separate spreadsheets. The re-
searchers manually researched the dates using internet 
searches: there was no automatic component in the data 
gathering process. The average time spent researching each 
country per researcher was 1.5 hours. 

Second, the researchers independently compared their en-
tries to the following public datasets and, if there were con-
flicts, visited all primary sources to resolve the conflict: the 
EFGNPI database (40) and the Oxford COVID-19 Government 
Response Tracker (41). 

Third, each country and NPI was again independently en-
tered by one to three paid contractors, who were provided 
with a detailed description of the NPIs and asked to include 
primary sources with their data. A researcher then resolved 
any conflicts between this data and one (but not both) of the 
spreadsheets. 

Finally, the two independent spreadsheets were combined 
and all conflicts resolved by a researcher. The final dataset 
contains primary sources (government websites and/or me-
dia articles) for each entry. 
 
Data preprocessing 
When the case count is small, a large fraction of cases may be 
imported from other countries and the testing regime may 
change rapidly. To prevent this from biasing our model, we 
neglected case numbers before a country has reached 100 
confirmed cases and death numbers before a country has 
reached 10 deaths. We included these thresholds in our sen-
sitivity analysis (fig. S13). 
 
Short model description 
In this section, we give a short summary of the model (Fig. 
5). The detailed model description is given in the supplemen-
tary text section A. In short, our model uses case and death 
data from each country to “backward” infer the number of 
new infections at each point in time, which is itself used to 
infer the reproduction numbers. NPI effects are then 

estimated by relating the daily reproduction numbers to the 
active NPIs, across all days and countries. This relatively sim-
ple, data-driven approach allowed us to sidestep assumptions 
about contact patterns and intensity, infectiousness of differ-
ent age groups, and so forth that are typically required in 
modeling studies. Code is available online on GitHub (14). 

Our model builds on the semi-mechanistic Bayesian hier-
archical model of Flaxman et al. (1), with several additions. 
First, we allow our model to observe both case and death 
data. This increases the amount of data from which we can 
extract NPI effects, reduces distinct biases in case and death 
reporting, and reduces the bias from including only countries 
with many deaths. Second, since epidemiological parameters 
are only known with uncertainty, we place priors over them, 
following recent recommended practice (42). Third, as we do 
not aim to infer the total number of COVID-19 infections, we 
can avoid assuming a specific infection fatality rate (IFR) or 
ascertainment rate (rate of testing). Fourth, we allow the ef-
fects of all NPIs to vary across countries, reflecting differ-
ences in NPI implementation and adherence. 

We now describe the model by going through Fig. 5 from 
bottom to top. The growth of the epidemic is determined by 
the time- and country-specific reproduction number Rt,c, 
which depends on (i) the (unobserved) basic reproduction 
number in country c, R0,c, and (ii) the active NPIs at time t. 
R0,c accounts for all time-invariant factors that affect trans-
mission in country c, such as differences in demographics, 
population density, culture, and health systems (43). 

Following Flaxman et al. and others (1, 6, 8), each NPI is 
assumed to independently affect Rt,c as a multiplicative factor 

 ( ), 0, , , ,
1

exp α
I

t c c i c i t c
i

R R x
=

= −∏  

where xi,t,c = 1 indicates that NPI i is active in country c on 
day t (xi,t,c = 0 otherwise), I is the number of NPIs, and αi,c is 
the “effect parameter” for NPI i in country c. The multiplica-
tive effect encodes the plausible assumption that NPIs have a 
smaller absolute effect when Rt,c is already low. 

We assume that the effect of each NPI on Rt,c is stable 
across time but can vary across countries to some degree. 
Concretely, the effect parameter of intervention i in country 
c is defined as αi,c = αi + zi,c, where αi represents the mean 

effect parameter, and 2
, ~ (0,σ )i c iz  . The variance σi

2 corre-

sponds to the degree of cross-country variation in the effec-
tiveness of NPI i and is inferred from the data. This partial 
pooling of NPI effect parameters minimizes bias from coun-
try-specific sources while also reflecting that NPI effective-
ness is likely different across countries. We define the 
“effectiveness” of NPI i as the percentage reduction in Rt as-
sociated with NPI i across countries. This effectiveness, dis-
played in Figs. 2 to 4, is computed as 1 – exp(–(αi + zi)), where 

again 2~ (0,σ )i iz   and σi
2 is drawn from its posterior. We 
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place an asymmetric Laplace prior on αi that allows for both 
positive and negative effects but places 80% of its probability 
mass on positive effects, reflecting that NPIs are more likely 
to reduce Rt,c than to increase it. 

In the early phase of an epidemic, the number of new daily 
infections grows exponentially. During exponential growth, 
there is a one-to-one correspondence between the daily 
growth rate and Rt,c (44). The correspondence depends on the 
generation interval (the time between successive infections 
in a chain of transmission), which we assume to have a 
gamma distribution. The prior on the mean generation inter-
val has a mean of 5.06 days, derived from a meta-analysis 
(45). 

We model the daily new infection count separately for 
confirmed cases and deaths, representing those infections 
which are subsequently reported and those which are subse-
quently fatal. However, both infection numbers are assumed 
to grow at the same daily rate in expectation, allowing the 
use of both data sources to estimate each αi. The infection 
numbers translate into reported confirmed cases and deaths 
after a delay. The delay is the sum of two independent distri-
butions, assumed to be equal across countries: the incubation 
period and the delay from onset of symptoms to confirma-
tion. We put priors over the means of both distributions, re-
sulting in a prior over the mean infection-to-confirmation 
delay with a mean of 10.92 days (45), see supplementary text 
section A.3. Similarly, the infection-to-death delay is the sum 
of the incubation period and the delay from onset of symp-
toms to death, and the prior over its mean has a mean of 21.8 
days (45). Finally, as in related models (1, 6), both the re-
ported cases and deaths follow a negative binomial output 
distribution with separate inferred dispersion parameters for 
cases and deaths. 

Using a Markov chain Monte Carlo (MCMC) sampling al-
gorithm (46), this model infers posterior distributions of each 
NPI’s effectiveness while accounting for cross-country varia-
tions in effectiveness, reporting, and fatality rates as well as 
uncertainty in the generation interval and delay distribu-
tions. To analyze the extent to which modeling assumptions 
affect the results, our sensitivity analysis included all epide-
miological parameters, prior distributions, and many of the 
structural assumptions introduced above. MCMC conver-
gence statistics are shown in fig. S19. 
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Table 1. NPIs included in the study.    
NPI Description 
Gatherings limited to 1000 
people or less 

A country has set a size limit on gatherings. The limit is at most 1000 
people (often less), and gatherings above the maximum size are disal-
lowed. For example, a ban on gatherings of 500 people or more would 
be classified as “gatherings limited to 1000 or less,” but a ban on gath-

erings of 2000 people or more would not. 
Gatherings limited to 100 
people or less 

A country has set a size limit on gatherings. The limit is at most 100 
people (often less). 

Gatherings limited to 10 
people or less 

A country has set a size limit on gatherings. The limit is at most 10 peo-
ple (often less). 

Some businesses closed A country has specified a few kinds of face-to-face businesses that are 
considered “high risk” and need to suspend operations (blacklist). Com-
mon examples are restaurants, bars, nightclubs, cinemas, and gyms. By 

default, businesses are not suspended. 
Most nonessential busi-
nesses closed 

A country has suspended the operations of many face-to-face busi-
nesses. By default, face-to-face businesses are suspended unless they 

are designated as essential (whitelist). 
Schools closed A country has closed most or all schools. 
Universities closed A country has closed most or all universities and higher education facil-

ities. 
Stay-at-home order An order for the general public to stay at home has been issued. This is 

mandatory, not just a recommendation. Exemptions are usually granted 
for certain purposes (such as shopping, exercise, or going to work) or, 

more rarely, for certain times of the day. Whenever countries in our da-
taset introduced stay-at-home orders, they essentially always also im-

plemented, or already had in place, all other NPIs in this table. All these 
are encoded as distinct NPIs in the data. In our results, we thus estimate 

the additional effect of a stay-at-home order on top of all other NPIs. 
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Fig. 1. Timing of NPI implementations in early 2020. Crossed-out symbols signify when an NPI was lifted. 
Detailed definitions of the NPIs are given in Table 1. 
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Fig. 2. NPI effectiveness under default model settings. Posterior percentage reductions in Rt with median, 50% 
and 95% prediction intervals shown. Prediction intervals reflect many sources of uncertainty, including NPI 
effectiveness varying by country and uncertainty in epidemiological parameters. A negative 1% reduction refers 
to a 1% increase in Rt. “Schools and universities closed” shows the joint effect of closing both schools and 
universities in conjunction; the individual effect of closing just one will be smaller (see text). Cumulative effects 
are shown for hierarchical NPIs (gathering bans and business closures) i.e., the result for “Most nonessential 
businesses closed” shows the cumulative effect of two NPIs with separate parameters and symbols—closing 
some (high-risk) businesses, and additionally closing most remaining (non-high-risk, but nonessential) 
businesses given that some businesses are already closed. 
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Fig. 3. Combined NPI effectiveness for the 15 most commonly implemented sets of NPIs in our data. Solid 
and shaded regions denote 50% and 95% Bayesian prediction intervals. (A) Predicted Rt after implementation 
of each set of NPIs, assuming R0 = 3.3. (B) Maximum R0 that can be reduced to Rt below 1 by common sets of 
NPIs. Readers can interactively explore the effects of all sets of NPIs, while setting R0 and adjusting NPI 
effectiveness to local circumstances, with our online mitigation calculator (16). 
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Fig. 4. Median NPI effectiveness across the sensitivity analyses. (A) Median NPI effectiveness (reduction in Rt) 
when varying different components of the model or the data in 206 experimental conditions. Results are 
displayed as violin plots, using kernel density estimation to create the distributions. Inside the violins, the box 
plots show median and interquartile-range. The vertical lines mark 0%, 17.5%, and 35% (see text).  
(B to E) Categorized sensitivity analyses. (B) Sensitivity to model structure. Using only cases or only deaths as 
observations (2 experimental conditions; fig. S7); varying the model structure (3 conditions; fig. S8, left).  
(C) Sensitivity to data and preprocessing. Leaving out countries from the dataset (42 conditions; figs. S5 and 
S21); varying the threshold below which cases and deaths are masked (8 conditions; fig. S13); sensitivity to 
correcting for undocumented cases and to country-level differences in case ascertainment (2 conditions; fig. S6). 
(D) Sensitivity to epidemiological parameters. Jointly varying the means of the priors over the means of the 
generation interval, the infection-to-case-confirmation delay, and the infection-to-death delay (125 conditions; 
fig. S10); varying the prior over R0 (4 conditions; fig. S11); varying the prior over NPI effect parameters  
(3 conditions; fig. S11); varying the prior over the degree to which NPI effects vary across countries (3 conditions; 
fig. S12). (E) Sensitivity to unobserved factors influencing Rt. Excluding observed NPIs one at a time (8 conditions; 
fig. S9); controlling for additional NPIs from a different dataset (6 conditions; fig. S9). 
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Fig. 5. Model overview. Unshaded, white nodes are observed. We describe the diagram from bottom to top: 
The mean effect parameter of NPI i is αi, and the country-specific effect parameter is αi,c. On each day t, a 
country’s daily reproduction number Rt,c depends on the country’s basic reproduction number R0,c and the 
active NPIs. The active NPIs are encoded by xi,t,c, which is 1 if NPI i is active in country c at time t, and 0 otherwise. 
Rt,c is transformed into the daily growth rate gt,c using the generation interval parameters, and subsequently is 
used to compute the new infections (C)

,t cN  and (D)
,t cN  that will subsequently become confirmed cases and deaths, 

respectively. Finally, the expected number of daily confirmed cases (C)
,t cy  and deaths (D)

,t cy  are computed using 

discrete convolutions of (.)
,t cN  with the relevant delay distributions. Our model uses both case and death data: it 

splits all nodes above the daily growth rate gt,c into separate branches for deaths and confirmed cases. We 
account for uncertainty in the generation interval, infection to case confirmation delay, and the infection to 
death delay by placing priors over the parameters of these distributions. 
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