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Intervention strategies are urgently needed to control the SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) pandemic. The trimeric viral spike (S) protein catalyzes fusion between viral and target cell
membranes to initiate infection. Here we report two cryo-EM structures, derived from a preparation of the
full-length S protein, representing its prefusion (2.9A resolution) and postfusion (3.0A resolution)
conformations, respectively. The spontaneous transition to the postfusion state is independent of target
cells. The prefusion trimer has three receptor-binding domains clamped down by a segment adjacent to the
fusion peptide. The postfusion structure is strategically decorated by N-linked glycans, suggesting possible
protective roles against host immune responses and harsh external conditions. These findings advance our
understanding of SARS-CoV-2 entry and may guide development of vaccines and therapeutics.

The current coronavirus pandemic is having devastating so-
cial and economic consequences. Coronaviruses (CoVs) are
enveloped positive-stranded RNA viruses. They include se-
vere acute respiratory syndrome (SARS) and Middle East res-
piratory syndrome (MERS), both with significant fatalities (7-
3), as well as several endemic common-cold viruses (4). With
a large number of similar viruses circulating in bats and cam-
els (5-8), the possibility of additional outbreaks poses major
threats to global public health. The current disease, COVID-
19 (coronavirus disease 2019), caused by a new virus SARS-
CoV-2 (9), has created urgent needs for diagnostics, therapeu-
tics and vaccines. Meeting these needs requires a deep under-
standing of the structure-function relationships of viral
proteins and relevant host factors.

For all enveloped viruses, membrane fusion is a key early
step for entering host cells and establishing infection (10).
Although an energetically favorable process, membrane fu-
sion has high Kkinetic barriers when two membranes ap-
proach each other, mainly due to repulsive hydration forces
(11, 12). For viral membrane fusion, free energy to overcome
these kinetic barriers comes from refolding of virus-encoded
fusion proteins from a primed, metastable prefusion confor-
mational state to a stable, postfusion state (13-15). The fusion
protein for CoV is its spike (S) protein that decorates the vi-
rion surface as an extensive crown (hence, “corona”). The pro-
tein also induces neutralizing antibody responses and is
therefore an important target for vaccine development (16).
The S protein is a heavily glycosylated type I membrane pro-
tein anchored in the viral membrane. It is first produced as a
precursor that trimerizes and is thought to be cleaved by a
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furin-like protease into two fragments: the receptor-binding
fragment S1 and the fusion fragment S2 (Fig. 1A) (7). Binding
through the receptor-binding domain (RBD) in S1 to a host
cell receptor (e.i., angiotensin converting enzyme 2 (ACE2)
for both SARS-CoV and SARS-CoV-2) and further proteolytic
cleavage at a second site in S2 (S2’ site), by a serine protease
TMPRSS2 (18) or endosomal cysteine proteases cathepsins B
and L (CatB/L), are believed to trigger dissociation of S1 and
irreversible refolding of S2 into a postfusion conformation -
a trimeric hairpin structure formed by heptad repeat 1 (HR1)
and heptad repeat 2 (HR2) (19, 20). These large structural re-
arrangements bring together the viral and cellular mem-
branes, ultimately leading to fusion of the two bilayers.
Since the first genome sequence of SARS-CoV-2 was re-
leased (2I), several structures have been reported for S pro-
tein complexes, including the ectodomain stabilized in the
prefusion conformation (22-24) and RBD-ACE2 complexes
(25-28) (fig. S1), building upon the previous success of the
structural biology of S proteins from other CoVs (20). In the
stabilized S ectodomain, S1 folds into four domains - NTD (N-
terminal domain), RBD, and two CTDs (C-terminal domains)
and protects the prefusion conformation of S2 in which HR1
bends back toward the viral membrane (fig. S1, A and B). The
RBD samples two distinct conformations - “up” representing
a receptor-accessible state and “down” representing a recep-
tor-inaccessible state. Structures representing the postfusion
state of S2 from mouse hepatitis virus (fig. S1E) and a lower-
resolution one from SARS-CoV (fig. SIF), suggest how the
structural rearrangements of S2 proceed to promote mem-
brane fusion and viral entry (29, 30). Comparison of the pre-
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and post-fusion states reveals that HR1 undergoes a “jack-
knife” transition that can insert the fusion peptide (FP) into
the target cell membrane. Folding back of HR2 places the FP
and transmembrane (TM) segments at the same end of the
molecule, causing the membranes with which they interact
to bend toward each other, effectively leading to membrane
fusion. In the previous structures, the regions near the viral
membrane are either not present or disordered, and yet they
all appear to play critical structural and functional roles (31-
35).

To gain further insight, we aimed to determine the pre
and post fusion states of full-length wild-type S protein of
SARS-CoV-2.

Results

Purification of intact S protein

To produce a functional SARS-CoV-2 S protein, we trans-
fected HEK293 cells with an expression construct of a full-
length wildtype S sequence with a C-terminal strep-tag (Fig.
1A). These cells fused efficiently with cells transfected with
an intact human ACE2 construct, even without addition of
any extra proteases (fig. S2), suggesting that the S protein ex-
pressed on the cell surfaces is fully functional for membrane
fusion. The fusion efficiency was not affected by the C-termi-
nal strep-tag. To purify the full-length S protein, we lysed the
cells and solubilized all membrane-bound proteins in 1% de-
tergent NP-40. The strep-tagged S protein was then captured
on strep-tactin resin in 0.3% NP-40. The purified S protein
eluted from a size-exclusion column as three distinct peaks in
0.02% NP-40 (Fig. 1B). Analysis by Coomassie-stained SDS-
PAGE (Fig. 1C) showed that peak 1 contained both the un-
cleaved S precursor and the cleaved S1/S2 complex; peak 2
had primarily the cleaved but dissociated S2 fragment; and
peak 3 included mainly the dissociated S1 fragment, as
judged by N-terminal sequencing and Western blot (fig. S3).
This was confirmed by negative stain EM (Fig. 1C). Peak 1
showed the strongest binding to soluble ACE2, comparable to
that for the purified soluble S ectodomain trimer, while peak
2 showed the weakest binding, since it contained mainly the
S2 fragment (fig. S4). While the cleavage at the S1/S2 (furin)
site is clearly demonstrated by protein sequencing of the N
terminus of the S2 fragment in peak 2, cleavage at the S2’ site
is not obvious. We observed in some preparations a band
around 20 kDa, a size expected for the S1/S2-S2’ fragment
(Fig. 1C). We obtained a similar gel filtration profile when an-
other detergent (DDM) was used to solubilize the S protein
(fig. S5), suggesting that the S protein dissociation during gel
filtration chromatography is not triggered by any specific de-
tergent. We also identified a major contaminating protein in
the preparation as endoplasmic reticulum chaperone BiP pre-
cursor (36), which may have a role in facilitating S protein
folding.
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Cryo-EM structure determination

Cryo-EM images were acquired with selected grids prepared
from all three peaks, on a Titan Krios electron microscope
operated at 300 keV and equipped with a BioQuantum en-
ergy filter and a Gatan K3 direct electron detector. We used
RELION (37) for particle picking, two-dimensional (2D) clas-
sification, three dimensional (3D) classification and refine-
ment. Structure determination was performed by rounds of
3D classification, refinement and masked local refinement, as
described in the supplementary materials. The final resolu-
tion was 2.9A for the prefusion S protein; 3.0A for the S2 in
the postfusion conformation (figs. S6 to S9).

Structure of the prefusion S trimer

The overall architecture of the full-length S protein in the pre-
fusion conformation is very similar to the published struc-
tures of a soluble S trimer stabilized by a C-terminal foldon
trimerization tag and two proline substitutions at the bound-
ary between HR1 and the central helix (CH) in S2 (fig. S1) (22,
23). In our new structure, the N terminus, several peripheral
loops and glycans that were invisible in the soluble trimer
structures are ordered (Fig. 2, A and B, and fig. SI0A). As de-
scribed previously, the four domains of the S1 fragment, NTD,
RBD, CTD1 and CTD2, wrap around the three-fold axis, cov-
ering the S2 fragment underneath. The furin cleavage site at
the S1/S2 boundary is in a surface-exposed and disordered
loop (Fig. 2B), so it is unclear whether this structure repre-
sents the uncleaved or cleaved trimer, although the sample
clearly contains both forms (Fig. 1C). Likewise, the S2 frag-
ment has a conformation nearly identical to that in the pre-
vious trimer structures, with most of the polypeptide chain
packed around a central three-stranded coiled coil formed by
CH, including the connector domain (CD), which links CH
and the C-terminal HR2 through an additional linker region.
A difference between our structure and the published trimer
structures is that a ~25-residue segment in S2 immediately
downstream of the fusion peptide is ordered. The segments,
HR2, TM and CT, not observed in previous structures, are still
not visible.

Several features are different between our structure and
the previously described prefusion conformations. First, the
N terminus in our structure is ordered and adopts a confor-
mation similar to that in SARS-CoV, including a disulfide
bond (Cys15-Cys136) and a N-linked glycan at Asn17 (Fig. 3A)
(38). It would be important to confirm whether this region is
unfolded with no disulfide bond in the stabilized soluble con-
structs or folded and simply poorly defined by density, de-
spite a disulfide bond, particularly if they are widely used for
vaccine studies.

Second, another disulfide containing segment (residues
828-853), immediately downstream of the fusion peptide is
also absent from the structures of the soluble ectodomain,
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but ordered in our structure (Fig. 3B). We designate it as the
fusion-peptide proximal region (FPPR). The FPPR is disor-
dered in both the closed and RBD-up conformations of the
stabilized soluble S trimer. In our full-length structure, it
packs rather tightly around an internal disulfide bond be-
tween Cys840 and Cys851, further reinforced by a salt bridge
between Lys835 and Asp848, as well as by an extensive hy-
drogen bond network. When compared with the RBD-up con-
formation by superposition of the rest of S2, the FPPR clashes
with CTD1, which rotates outwards with the RBD in the flip-
ping-up transition. Thus, a structured FPPR, abutting the op-
posite side of CTD1 from the RBD, appears to help clamp
down the RBD and stabilize the closed conformation of the S
trimer. It is not obvious why the FPPR is also not visible in
the published, closed S ectodomain structure with all three
RBDs in the down conformation (23). Our structure of the
full-length S protein suggests that CTD1 is a structural relay
between RBD and FPPR that can sense the displacement on
either side. The latter is directly connected to the fusion pep-
tide. Lack of a structured FPPR in the stabilized, soluble S
trimer may explain why the RBD-up conformation is readily
detected in that preparation. In addition, a D614G mutation,
identified in recent SARS-CoV-2 isolates, has been suggested
to lead to more efficient entry (39, 40). D614 forms a salt
bridge with K854 in the FPPR (fig. S10B), supporting a func-
tional role of the FPPR in membrane fusion. In the 3D classi-
fication of our prefusion particles from two independent data
sets, only one subclass with an RBD flipped up was observed
(fig. S6), suggesting that the RBD-up conformation is rela-
tively rare in our full-length S preparation. The map for this
subclass was refined to 4.7A without C3 symmetry and we
could not model the FPPR. The FPPR is ordered in all other
maps that are refined to 3.5A or higher resolution.

When we aligned our full-length structure with the solu-
ble S trimer structure by the S2 portion, the three S1 subunits
in the soluble trimer structure move outwards away from the
three-fold axis, up to ~12A in peripheral areas (Fig. 3C and
fig. S11), suggesting the full length S trimer is more tightly
packed among the three protomers than the mutated soluble
trimer. Examining the region near the proline mutations be-
tween HR1 and CH, we found that the K986P mutation ap-
peared to eliminate a salt bridge between Lys986 in one
protomer and either Asp 427 or Asp428 in another protomer;
thus, the mutation could create a net charge (three for one
trimer) inside the trimer interface. This may explain why the
soluble trimer with the PP mutation has a looser structure
than the full-length S with wildtype sequence. Whether this
loosening leads to disordered FPPRs in the closed trimer will
require additional experimental evidence. However, the pro-
line mutations, designed to destabilize the postfusion confor-
mation and strengthen the prefusion structure, may also
impact the prefusion structure.
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Structure of the postfusion S2 trimer

3D reconstruction of the sample from peak 2 yielded a postfu-
sion structure of the S2 trimer, shown in Fig. 4A. The overall
architecture of the SARS-CoV-2 S2 in the postfusion confor-
mation is nearly identical to that of the published structure
derived from the S2 ectodomain of mouse hepatitis virus
(MHYV) produced in insect cells (fig. S1) (29). In the structure,
HR1 and CH form an unusually long central three-stranded
coiled coil (~180A). The connector domain, together with a
segment (residues 718-729) in the S1/S2-S2’ fragment, form a
three-stranded @ sheet, which is invariant between the pre-
fusion and postfusion structures. In the postfusion state, res-
idues 1127-1135 join the connector 3 sheet to expand it into
four strands, while projecting the C-terminal HR2 toward the
viral membrane. Another segment (residues 737-769) in the
S1/S2-S2’ fragment makes up three helical regions locked by
two disulfide bonds that pack against the groove of the CH
part of the coiled coil to form a short six helix bundle struc-
ture (6HB-1 in Fig. 4B). It is unclear whether the S’2 site is
cleaved because it is in a disordered region spanning 142 res-
idues (Fig. 4B), as in the MHV S2 structure. Nevertheless, the
S1/S2-S2’ fragment is an integral part of the postfusion struc-
ture and would not dissociate, regardless of cleavage at the
S2’ site. The N-terminal region of HR2 adopts a one-turn hel-
ical conformation and also packs against the groove of the
HRI1 coiled-coil; the C-terminal region of HR2 forms a longer
helix that makes up the second six-helix bundle structure
with the rest of the HR1 coiled-coil (6HB-2 in Fig. 4B). Thus,
the long central coiled-coil is reinforced multiple times along
its long axis, making it a very rigid structure, as evident even
from 2D class averages of particles in the cryo images (fig.
S8).

A striking feature of the postfusion S2 is its surface deco-
ration by N-linked glycans (Fig. 4C), also visible in the 2D
class averages (fig. S8). Five glycans at residues Asnl098,
Asnl1134, Asn1158, Asn1173 and Asn1194 are positioned along
the long axis with a regular spacing with four of them aligned
on the same side of the trimer. If these glycosylation sites are
fully occupied by branched sugars, they may shield most sur-
faces of the postfusion S2 trimer. A similar pattern has been
recently described in a paper posted in ChinaXiv
(http://www.chinaxiv.org/user/download.htm?id=30394) for
a SARS-CoV S2 preparation derived from a soluble S ectodo-
main construct produced in insect cells and triggered by pro-
teolysis and low pH. The reason for this decoration is unclear
given that a postfusion structure has accomplished its mis-
sion, and should not need to be concealed from the immune
system.

Peak 3 contains primarily the dissociated monomeric S1
fragment, which has the smallest size (~100 kDa) and shows
the lowest contrast in cryo grids of the three particle types we
describe. We carried out a preliminary 3D reconstruction
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analysis (fig. S12), further confirming its identity.

Discussion

Architecture of S protein on the surface of SARS-CoV-2
virion

The fact that the cleaved S1/S2 complex dissociates in the ab-
sence of ACE2 and that the S2 fragment adopts a postfusion
conformation under mild detergent conditions, suggesting
that the kinetic barrier for the conformational transition rel-
evant to viral entry is surprisingly low for this S protein.
Whether or not this observation relates directly to efficient
membrane fusion or infection is unclear. Nevertheless, it is
noteworthy that the postfusion S2 trimer not only has a very
stable and rigid structure, but also that it is strategically dec-
orated with N-linked glycans along its long axis, as if under
selective pressure for functions other than the membrane fu-
sion process. Although some have suggested that viral fusion
proteins may further oligomerize in their postfusion confor-
mation to facilitate fusion pore formation (41), the protrud-
ing surface glycans of the SARS-CoV-2 S2 make this scenario
unlikely. A more plausible possibility is a protective role that
the S2 postfusion structure could play if it is also present on
the surface of an infectious and mature virion. It may induce
nonneutralizing antibody responses to evade the host im-
mune system; it may also shield the more vulnerable pre-
fusion S1/S2 trimers under conditions outside the host by
decorating the viral surface with interspersed rigid spikes
(Fig. 5A). Several recent reports have provided some evidence
supporting this possibility. First, EM images of a B-propio-
lactone inactivated SARS-CoV-2 virus preparation, purified by a
potassium tartrate-glycerol density gradient, appeared to have
lost all S1 subunits, leaving only the postfusion S2 on the virion
surfaces (42). Likewise, EM images of a R-propiolactone inacti-
vated SARS-CoV-2 virus vaccine candidate (PiCoVacc) also
showed needle-like spikes on its surfaces (43). Second, sponta-
neous shedding of SARS-CoV-2 S1 from pseudoviruses in absence
of ACE2 has been reported (39). Third, binding antibodies
against S2 are readily detectable in COVID-19 patients (44), sug-
gesting S2 is more exposed to the host immune system than in-
dicated by the unprotected surfaces on the prefusion structures
(22, 23) (Fig. 2). We therefore suggest that postfusion S2 trimers
may have a protective function by constituting part of the crown
on the surface of mature and infectious SARS-CoV-2 virion (Fig.
5). The postfusion S2 spikes are probably formed after spontane-
ous dissociation of S1, independent of the target cells.

Membrane fusion

We identify a structure near the fusion peptide - the fusion
peptide proximal region (FPPR), which may play a critical
role in the fusogenic structural rearrangements of S protein.
There appears to be crosstalk between the RBD and the
FPPR, mediated by CTD1, as a structured FPPR clamps down
the RBD while an RBD-up conformation disorders the FPPR.
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Moreover, the FPPR is close to the S1/S2 boundary and the
S2’ cleavage site, and thus might be the center of activities
relevant to conformational changes in S. One possibility is
that one FPPR occasionally flips out of position due to intrin-
sic protein dynamics, allowing the RBDs to sample the up
conformation. A fluctuation of this kind would loosen the en-
tire S trimer, as observed in modified soluble S trimer con-
structs (22, 23). Once an RBD is fixed in the up position by
binding to ACE2 on the surface of a target cell, a flexible FPPR
may enable exposure of the S2’ cleavage site immediately up-
stream of the adjacent fusion peptide. The phenotype of the
D614G mutation appears to be consistent with the notion
that the FPPR is involved in membrane fusion (39, 40). Cleav-
age at the S2’ site releases the structural constraints on the
fusion peptide, which may initiate a cascade of refolding
events in S2, including formation of the long central three
stranded coiled-coil, folding back of HR2 and ultimately
membrane fusion. Cleavage at the S1/S2 site allows complete
dissociation of S1, which may also facilitate S2 refolding.

Puzzles regarding membrane fusion remain, as the re-
gions near the viral membrane are still not visible in the re-
constructions. Yet these regions all play critical structural
and functional roles. For example, the conserved hydropho-
bic region immediately preceding the TM domain, and possi-
bly the TM itself, have been shown to be crucial for S protein
trimerization and membrane fusion (3I). The cytoplasmic
tail, containing a palmitoylated cysteine-rich region, is be-
lieved to be involved in viral assembly and cell-cell fusion
(32-35). Whether other viral proteins, such M protein, may
help stabilize the spike by interacting with the HR2 remains
an interesting question. Thus, we still need a high-resolution
structure of an intact S protein in the context of the mem-
brane and other viral components to answer the various open
questions.

Considerations for vaccine development

A safe and effective vaccine is the primary medical option to
reduce or eliminate the threat posed by SARS-CoV-2. The first
round of vaccine candidates with various forms of the spike
(S) protein of the virus are passing rapidly through preclini-
cal studies in animal models and clinical trials in humans.
Our study raises several potential concerns about the current
vaccine strategies. First, vaccines using the full-length
wildtype sequence of S protein may produce the various
forms in vivo that we have observed here. The postfusion con-
formations could expose immunodominant, nonneutralizing
epitopes that distract the host immune system, as docu-
mented for other viruses, such as HIV-1 and RSV (45, 46). Sec-
ond, the approach to stabilize the prefusion conformation by
introducing proline mutations at residues 986 and 987 may
not be optimal, as the K986P mutation may break a salt
bridge between protomers that contributes to the trimer

(Page numbers not final at time of first release) 4

0202 ‘9 1snbny uo /B10°Brewaouslns aousIds//:dny wol) papeojumoq


http://www.sciencemag.org/
http://science.sciencemag.org/

stability. The resulting S trimer structure with a relaxed apex
may induce antibodies that could not efficiently recognize S
trimer spikes on the virus, although it may be more effective
in inducing anti-RBD neutralizing responses than the closed
form. Third, in light of the possibility that the postfusion S2
is present on infectious virions, vaccines using p-propio-
lactone inactivated viruses may require additional quality
control tests. Although the PiCoVacc appears to provide pro-
tection against challenges in nonhuman primates after three
immunizations (43), it is unclear how to minimize the num-
ber of the postfusion S2 trimers to avoid batch variations.
Structure-guided immunogen design may be particularly crit-
ical if SARS-CoV-2 becomes seasonal and returns with anti-
genic drift, as do influenza viruses (47).
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Fig. 1. Preparation of a full-length SARS-CoV-2 spike protein. (A) Schematic representation of the
expression construct of full-length SARS-CoV-2 spike (S) protein. Segments of S1and S2 include: NTD,
N-terminal domain; RBD, receptor-binding domain; CTD1, C-terminal domain 1; CTD2, C-terminal
domain 2; S1/S2, S1/S2 cleavage site; S2', S2' cleavage site; FP, fusion peptide; FPPR, fusion peptide
proximal region; HR1, heptad repeat 1; CH, central helix region; CD, connector domain; HR2, heptad
repeat 2; TM, transmembrane anchor; CT, cytoplasmic tail; and tree-like symbols for glycans. A strep-
tag was fused to the C terminus of S protein by a flexible linker. (B) The purified S protein was resolved
by gel-filtration chromatography on a Superose 6 column in the presence of detergent NP-40. The
molecular weight standards include thyoglobulin (670 kDa), y-globulin (158 kDa) and ovalbumin (44
kDa). Three major peaks (peak I-1ll) contain the S protein. (C) Load sample and peak fractions from (B)
were analyzed by Coomassie stained SDS-PAGE. Labeled bands were confirmed by Western blot (S,
S1 and S2) or protein sequencing (S2 and Cont; S and S1 bands did not gave any meaningful results
probably due to a blocked N terminus). Cont, copurified contaminating protein, identified as
endoplasmic reticulum chaperone BiP precursor by N-terminal sequencing. *, a putative S1/S2-S2'
fragment. Representative images and 2D averages by negative stain EM of three peak fractions are also
shown. The box size of 2D averages is ~510A.
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Protomer B
Protomer A Protomer C

Fig. 2. Cryo-EM structure of the SARS-CoV-2 S protein in the prefusion
conformation. (A) The structure of the S trimer was modeled based on a 2.9A density
map. Three protomers (A, B, and C) are colored in green, blue and red, respectively. (B)
Overall structure of S protein in the prefusion conformation shown in ribbon
representation. Various structural components in the color scheme shown in Fig. 1A
include NTD, N-terminal domain; RBD, receptor-binding domain; CTD1, C-terminal
domain1; CTD2, C-terminal domain 2; FP, fusion peptide; FPPR, fusion peptide proximal
region; HR1, heptad repeat 1, CH, central helix region; and CD, connector domain. N
terminus, S1/S2 cleavage site and S2' cleavage site are indicated.
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Fig. 3. Selected new features of the SARS-CoV-2 prefusion S trimer. (A) N-terminal segment of S
protein. The N terminus is at residue GInl4 after cleavage of the signal peptide. Cysl15 forms a disulfide
bond with Cysl36. We observed good density for the N-linked glycan at Asnl7. (B) A segment
immediately downstream of the fusion peptide, while disordered in the stabilized soluble S ectodomain
trimer structure, forms a tightly packed structure, designated FPPR for the fusion peptide proximal
region, abutting CTD1. The newly identified FPPR structure would clash with CTD1 in the RBD up
conformation. Various domains are shown in the color scheme in Fig. 2B. The structure of the soluble S
trimer with one RBD in the up conformation (PDB ID: 6vyb) is shown in gray. In the box, a close-up view
of the FPPR with adjacent fusion peptide in both surface representation and stick model. (C) The SARS-
CoV-2 prefusion S trimer, viewed along the threefold axis, is superposed on the structure of the stabilized
soluble S ectodomain trimer in the closed conformation with all three RBDs in the down conformation
(PDB ID: 6vxx). While the S2 region is well aligned, there is a significant shift (e.g., ~12A between two
Alal23residues)in S1. (D) Impact of the proline mutations introduced at residues 986 and 987 to stabilize
the prefusion conformation. K986P mutation removes a salt bridge between Lys986 of one protomer and
either Asp427 or Asp428 of another protomer in the trimer interface.
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Fig. 4. Cryo-EM structure of the SARS-CoV-2 S2 in the postfusion conformation. (A) The structure of
the S2 trimer was modeled based on a 3.3A density map. Three protomers (A, B, and C) are colored in
green, blue and red, respectively. (B) Overall structure of the S2 trimer in the postfusion conformation
shown in ribbon diagram. Various structural components in the color scheme shown in Fig. 1A include HR1,
heptad repeat 1; CH, central helix region; CD, connector domain; and HR1, heptad repeat 2. The S2’
cleavage site is in a disordered loop between lle770 and Thr912. Possible locations of the S2 N terminus
(S1/S2 cleavage site), the FP and FPPR are also indicated. (C) A low-resolution map showing the density
pattern for 5 N-linked glycans, with almost equal spacing along the long axis.
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Fig. 5. A model for structural rearrangements of SARS-Cov-2 S protein. (A) Structural changes
independent of a target cell. We suggest that both the prefusion and postfusion spikes are present on the
surface of mature virion and the ratio between them may vary (diagram of virion). The postfusion spikes on
the virion are formed by S2 after S1 dissociates in the absence of ACE2. (B) ACE2-dependent structural
rearrangements. Structural transition from the prefusion to postfusion conformation inducing membrane
fusion likely proceeds stepwise as follows: 1) FPPR clamps down RBD through CTD1 in the prefusion S trimer
(this study), but it occasionally flips out of position and allows an RBD to sample the up conformation (PDB
ID: 6vyb). 2) RBD binding to ACE2 (PBD ID: 6m17) creates a flexible FPPR that enables exposure of the S2'
cleavage site immediately upstream of the adjacent fusion peptide (FP). Cleavage at the S2' site, and
perhaps also the S1/S2 site, releases the structural constraints on the fusion peptide and initiates a cascade
of refolding events in S2, probably accompanied by complete dissociation of S1. 3) Formation of the long
central three-stranded coiled-coil and folding back of HR2. 4) Formation of the postfusion structure of S2
(this study) that brings the two membranes together, facilitating formation of a fusion pore and viral entry.
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