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Abstract 
 
Background: Asymptomatic or subclinical SARS-CoV-2 infections are often unreported, which 
means that confirmed case counts may not accurately reflect underlying epidemic dynamics. 
Understanding the level of ascertainment (the ratio of confirmed symptomatic cases to the true 
number of symptomatic individuals) and undetected epidemic progression is crucial to informing 
COVID-19 response planning, including the introduction and relaxation of control measures. 
Estimating case ascertainment over time allows for accurate estimates of specific outcomes such as 
seroprevalence, which is essential for planning control measures. 
  
Methods: Using reported data on COVID-19 cases and fatalities globally, we estimated the 
proportion of symptomatic cases (i.e. any person with any of fever >= 37.5°C, cough, shortness of 
breath, sudden onset of anosmia, ageusia or dysgeusia illness) that were reported in 210 countries and 
territories, given those countries had experienced more than ten deaths. We used published estimates 
of the case fatality ratio (CFR) as an assumed baseline. We then calculated the ratio of this baseline 
CFR to an estimated local delay-adjusted CFR to estimate the level of under-ascertainment in a 
particular location. We then fit a Bayesian Gaussian process model to estimate the temporal pattern of 
under-ascertainment. 
 
Results: We estimate that, during March 2020, the median percentage of symptomatic cases detected 
across the 84 countries which experienced more than ten deaths ranged from 2.38% (Bangladesh) to 
99.6% (Chile). Across the ten countries with the highest number of total confirmed cases as of 6th 
July 2020, we estimated that the peak number of symptomatic cases ranged from 1.4 times (Chile) to 
17.8 times (France) larger than reported. Comparing our model with national and regional 
seroprevalence data where available, we find that our estimates are consistent with observed values. 
Finally, we estimated seroprevalence for each country. Despite low case detection in some countries, 
our results that adjust for this still suggest that all countries have had only a small fraction of their 
populations infected as of July 2020. 
 
Conclusions: We found substantial under-ascertainment of symptomatic cases, particularly at the 
peak of the first wave of the SARS-CoV-2 pandemic, in many countries. Reported case counts will 
therefore likely underestimate the rate of outbreak growth initially and underestimate the decline in 
the later stages of an epidemic. Although there was considerable under-reporting in many locations, 
our estimates were consistent with emerging serological data, suggesting that the proportion of each 
country's population infected with SARS-CoV-2 worldwide is generally low. 
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Introduction 
 
The pandemic of the novel coronavirus SARS-CoV-2 has caused 11.7 million confirmed cases and 
538,818 deaths as of 6h July 2020 (1). As a precautionary measure, or in response to locally detected 
outbreaks, countries have introduced control measures with varying degrees of stringency (1), 
including isolation and quarantine; school and workplace closures; bans on social gatherings; physical 
distancing and face coverings; and stay-at-home orders  (2,3). Several features of SARS-CoV-2 make 
accurate detection during an ongoing epidemic challenging (4–6), including high transmissibility 
(3,7–9); an incubation period with a long-tailed distribution (10); pre-symptomatic transmission (11); 
and the existence of asymptomatic infections, which may also contribute to transmission (12). These 
attributes mean that infections can go undetected (13) and that countries may only detect and report a 
fraction of their infections (3,14). 
 
Understanding the extent of unreported infections in a given country is crucial for situational 
awareness. If the true size of the epidemic can be estimated, this enables a more reliable assessment of 
how and when non-pharmaceutical interventions (NPIs) should be both introduced, as infections rise, 
or relaxed as infections fall (3). Estimates of infection prevalence are also important for obtaining 
accurate measures of transmission: if the proportion of infections reported declines as the epidemic 
rises, the number of confirmed cases will grow slower than the actual underlying epidemic. Likewise, 
if detection rises as the epidemic declines, it may appear that transmission is not declining as fast as it 
is in reality. Underdetection of cases also makes it challenging to estimate at what stage of the 
epidemic a particular country is (15): viewed in isolation, case incidence data could reflect a very 
large undetected epidemic, or a smaller, better reported epidemic. 
 
To estimate how the levels of under-ascertainment vary over time, we present a modelling framework 
that combines data on reported cases and deaths, and published severity estimates. We apply our 
methods to countries that have reported more than ten deaths to date, then use these under-
ascertainment estimates to reconstruct global epidemics in all countries where case and death time 
series data are available. We also compare the model estimates for cumulative incidence against 
existing seroprevalence results. Finally, we present the adjusted case curves for the ten countries with 
the highest confirmed and adjusted case numbers, as well as global prevalence estimates for SARS-
CoV-2. 
 
Methods 
 
As SARS-CoV-2 infections that generate mild symptoms are more likely to be missed than severe 
cases, the ratio of cases to deaths, adjusting for delays from report to fatal outcome, can provide 
information on the possible extent of undetected symptomatic infections. Using a Bayesian Gaussian 
process model, we estimate changes in under-ascertainment over time, as described below. 
 
Adjusting for delay from confirmation to death 
In real time, simply dividing deaths to date by cases to date leads to a biased estimate of the case 
fatality ratio (CFR), because this naive calculation does not account for delays from confirmation of a 
case to death, and under-ascertainment of cases (5,6) and in some circumstances, under-ascertainment 
of deaths too. Using the distribution of the delay from hospitalisation to death for cases that are fatal, 
we can estimate how many cases so far are expected to have known outcomes (i.e. death or recovery), 
and hence adjust the naive estimates of CFR to account for these delays and produce a delay-adjusted 
CFR (dCFR). Separately published dCFR estimates for a given country can be used to estimate the 
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number of symptomatic cases that would be expected for a given dCFR trajectory. Available 
estimates for the CFR that adjust for under-reporting typically range from 1–1.7% (7–10). Large 
studies in China and South Korea estimate the CFR at 1.38% (95% CrI: 1.23–1.53%) (9) and 1.7% 
(95% CrI: 1.1-2.5%) (7) respectively. 

Inferring level of under-ascertainment 
Assuming a baseline CFR of 1.4% (95% CrI: 1.2% - 1.5%), the ratio of this baseline CFR to our 
estimate of the dCFR for a given country can be used to derive a crude estimate of the proportion of 
symptomatic cases that go unreported for this country. For each country we calculate the dCFR on 
each day and use the ratio of the baseline CFR to the dCFR estimate to produce daily estimates of the 
proportion of unreported cases. We then use a Gaussian process (GP) model to fit a time-dependent 
under-ascertainment rate for each country. A more detailed description of the methods, including the 
mathematical details of the Gaussian process and the different sources of uncertainty present in the 
model, can be found in the Supplementary Material.  

With the aim of developing a parsimonious and easily transferable analysis framework, we assume the 
same baseline CFR for all countries in the main results. Given that CFR varies substantially with age 
(5), this induces a certain amount of error in our estimates, especially for countries with age 
distributions significantly different to China, where the data used to derive the baseline CFR estimates 
originated (5). Therefore, we include a version of all the main results where we compute an indirectly 
adjusted baseline CFR, using the underlying age distribution of each country using the wpp2019 R 
package (16) and the age-stratified CFR estimates from (17) in the supplementary material (Figures 
S5, S6 and S7), where we also include a verbose limitations section discussing at length the potential 
errors induced under such assumptions. 

Relationship between under-ascertainment and testing 
We attempt to characterise the relationship between testing and case ascertainment using our temporal 
under-ascertainment estimates and testing data for many countries from OurWorldInData (18). We do 
so by plotting them together (Figure 1) and performing a correlation test between the two for all 
countries we had both data for. The resulting bivariate scatterplot is included in the supplementary 
material (Figure S3). 

Comparison against seroprevalence estimates 
We attempted to reconstruct the infection curves by first adjusting the reported case data for under-
ascertainment (Figure 1). We then adjust further these estimated symptomatic case curves so that they 
represent all infections. We do so using the assumption that 50% of infections are asymptomatic 
overall, with an assumed wide range between 10% - 70% and mean-lagging the time point to adjust 
for the delay between onset of symptoms to confirmation (19). 

Data and code availability 
The data we use is publicly available online from the European Centre for Disease Control (ECDC) 
(20). The code for the dCFR and under-reporting estimation model can be found here: 
https://github.com/thimotei/CFR_calculation. The code to read in the under-ascertainment data and to 
reproduce the figures in this analysis can be found here: 
https://github.com/thimotei/covid_underreporting.  

Results  
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We estimated substantial variation in the proportion of symptomatic cases detected over time in many 
of the countries considered (Figure 1 & Figure S1). For example, during March the median percentage 
of symptomatic cases detected across the 84 countries which experienced more than ten deaths ranged 
from 2.38% (Bangladesh) to 99.6% (Chile). Also during March, the median percentage of 
symptomatic cases detected across Europe ranged from 4.81% (France) to 85.5% (Cyprus). 
 
Countries might expect to detect an increasing proportion of symptomatic cases if they scale up 
testing effort in response to the outbreak. To measure this, we compared our estimates for the 
proportion of cases detected with the number of tests performed per new case each day, which can 
provide an indication of testing effort with a country (18). Taking a moving average with a 7-day 
window, we found that countries that showed high testing effort did not necessarily have high levels 
of case ascertainment. For example, in a two-week period in March the United Kingdom performed 
80 tests per new case (the mean across Europe during the same period was 27 tests per new case). 
However, we estimate that also in the UK only between 3-10% of symptomatic cases were being 
detected (Figure 1). Overall, we found a weak positive correlation between testing effort and case 
ascertainment (Kendall’s correlation coefficient of 0.16). This suggests that increased testing effort 
can help to improve case ascertainment, but on its own is not enough to guarantee low levels of under-
ascertainment.  
 
Using our temporal under-ascertainment trends, we estimate that during March, April, and May the 
percentage of symptomatic cases detected in European countries and averaged over time ranged from 
4.8% - 86% (France - Cyprus), 5.8% - 100% (France - Belarus) and 11% - 86% (Hungary - Cyprus) 
respectively. By comparison, the number of reported tests performed per new confirmed case, 
averaged over the month in question, ranged between 2.7 to 76 in March (Belgium - Portugal), 2.7 to 
832 in April (Belgium - Slovakia) and 12 to 1334 (Ukraine - Lithuania) in May. 
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Figure 1: Illustrative examples of temporal variation in under-ascertainment and testing effort.  
Nine countries under-ascertainment and testing effort dynamics, where the under-
ascertainment dynamics display a typical U-trend. The solid black line is the estimated median 
proportion of symptomatic cases ascertained over time and the shaded blue region is the 95% 
credible interval of these ascertainment estimates. Dashed line shows the reported testing effort, 
which we defined as a 7-day moving average of the number of new tests per new case reported 
each day. 
 
Adjusting confirmed case data for under-ascertainment to obtain estimated symptomatic case curves, 
we found a much larger and more peaked epidemic in the ten countries with the highest total number 
of confirmed cases and the ten with the highest number of adjusted cases as of 6th July 2020 (Figure 
2, with estimates for other countries shown in Figure S2). Typically, the estimated peak of 
symptomatic cases in these countries ranged from 1.4 times (Chile) to 17.8 times larger (France) than 
the peak in the reported case data (Table 1). Moreover, in the five countries of these ten that had a 
clear initial peak before the end of May 2020, we estimated that the post-peak decline in the number 
of infections was steeper than that implied by the confirmed case curves (Figure 2B).  
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Figure 2: Confirmed case curves adjusted for temporal under-ascertainment. Panel A: Confirmed 
cases (left) and adjusted cases (right) for the ten countries with the highest number of confirmed 
cases. Panel B: Confirmed cases (left) and adjusted cases (right) for the ten countries with the 
highest number of confirmed cases after adjusting for under-ascertainment. There are two 
countries which change between panels A and B: France and Mexico are replaced by Chile and 
Peru respectively. Panel C: The same curves plotted in panel A, but with a plot per country. 
Blue shaded region corresponds to the 95% CrI of the adjusted curves. Panels A and B 
highlight between country variation whereas panel C highlights within country variation. 
 
We also compared the estimated proportion of individuals infected in our model with seroprevalence 
studies that measured the prevalence of SARS-CoV-2 antibodies. We represent our cumulative 
incidence estimates in the same form as the observed serological estimates, as a percentage of the 
population. This is either the population of the country or the population of some smaller region or 
sub-region, depending on the serological dataset. We found that all but one of the published 
seroprevalence estimates fell within the 95% credible interval (CrI) of our estimated cumulative 
incidence curves over time, with the one exception being Denmark where we underestimated the 
observed seroprevalence (Figure 3).   
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Figure 3: Estimated infection prevalence curves compared with observed seroprevalence data. 
Panel A: country-level comparisons. Panel B: City-level comparisons for Geneva, London and 
New York. Panel C: Regional-level comparisons, using six of the eight regions of England. 
North West and Yorkshire are aggregated together and London is shown above in Panel B: 
After adjusting the reconstructed new cases per day curves for potential asymptomatic 
infections and for the delay between onset of symptoms and confirmation, we sum up the cases 
and divide by the population in each country or region, to estimate the total percentage infected. 
We are then able to directly compare the model estimates to existing seroprevalence results 
(black points, with 95% binomial CI above and below). Dashed line shows the end of the 
serological testing period, therefore we lag the seroprevalence estimate by the mean delay 
between infection-to-seroconversion, which is likely to be around 14 days (21). 
 
 
Applying our estimation method to all countries for which case and death time series data are 
available, we produced a map of seroprevalence estimates as of 16th June (Figure 4A), suggesting that 
most infections by this point had been concentrated in Europe and the US. We estimate that between 
0.02% - 15% of populations in Europe have been infected. Cases have been rising in Latin America 
and Africa. For both continents combined, we estimate that between 0.00% - 3.48% of the population 
of these two continents had been infected as of 16 June 2020. We also reconstructed the early 
progression of the COVID-19 pandemic across Europe (Figure 4B), finding that the estimated 
infection prevalence over time was an order of magnitude higher than the confirmed case numbers 
suggest, with prevalence growing rapidly in late February and early March in several countries.  
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Figure 4: Map of estimated seroprevalence in different countries over time. A) Estimated 
seroprevalence of SARS-CoV-2 globally as of 7th June 2020, for all countries we have estimates 
for. B–D) The estimated seroprevalence of SARS-Cov-2 in Europe on B) 31st March, C) 30th 
April and D) 31st May.   
 
 
Discussion 
 
The epidemiological and clinical characteristics of SARS-CoV-2 mean that a large proportion of 
infections may go undetected (14,22). In the absence of serological data, the ratio between cases and 
deaths, adjusted for delays from confirmation-to-outcome, can be used to derive estimates of the 
proportion of symptomatic cases reported. Using this approach, we estimated that case ascertainment 
dropped substantially in many countries during the peak of their first epidemic wave. Although 
serological surveys are beginning to emerge (22), many countries do not have such data available, or 
may only have results from a single cross-sectional survey. The methods and estimates presented here 
can therefore provide an ongoing picture of the underlying epidemics, including local level dynamics 
as fine-scale surveillance data become available (23,24).  
 
Our analysis has some limitations. We assumed the age-adjusted baseline CFR was 1.4% (95% CrI: 
1.2% - 1.5%) (4), which is broadly consistent with other published estimates (5,25,26), and we 
assumed a range of 10% - 70% of infections were asymptomatic (22,27–29) with a mean value of 
50% (13). Given the uncertainty in these estimates, we propagated the variance in baseline CFR and 
range in proportion asymptomatic in the inference process so the final 95% credible interval reported 
for under-ascertainment reflects underlying uncertainty in the model parameters. We also assumed 
that deaths from COVID-19 are accurately reported. If local testing capacity is limited, or if testing 
policy affects attribution of deaths (for example, the evidence for the efficacy of post-mortem 
swabbing is lacking), deaths can be misattributed to a cause other than COVID-19. In that case, our 
model may underestimate the true burden of infection. Additionally, if a large proportion of 
transmission is concentrated within specific age groups, the effective CFR may be higher or lower 
than the assumed baseline; with better age-stratified temporal data on cases and deaths, it would be 
possible to explore the effect of this in more detail. However, our estimates were in general consistent 
with published serological data, where available. Further, given that our estimates of under-
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ascertainment in many countries suggest that the numbers of symptomatic infections at the peak of the 
outbreak were one or two orders of magnitude larger than reported cases, even if deaths are under-
reported, our estimates are still likely to be much closer to the true burden than locally reported cases 
imply. Our estimates of under-ascertainment over time require a time-series of COVID-19 deaths as 
an input, a data source that may also exhibit reporting variation. One notable example of this was 
Spain during June 2020 (Figure S1). However, as our Gaussian process model quantifies time-varying 
case ascertainment, it is able to account for positive or negative spikes in reporting (14)  (see the 
Extended Methods section in the Supplementary Material for more details). 

Since the temporal trend in under-ascertainment does not necessarily reflect trends in reported cases 
or testing effort, evidence synthesis methods such as the one presented here can provide additional 
insights into whether observed case patterns reflect the underlying epidemic dynamics. In the early 
stages of outbreaks, this method can provide an indication of whether a large proportion of cases are 
being detected – and hence whether transmission may be containable with targeted measures such as 
isolation and contact tracing – or whether transmission is more widespread and a more extensive 
response is required. Such estimates can also provide insights in the later stages of an outbreak, as 
they can indicate high levels of detection in countries that have achieved control. For example, in 
Australia, an adapted version of our model estimated that 80% (95% CrI: 55% - 100%) of cases had 
likely been ascertained during the outbreak (24). By adjusting for under-ascertainment, it is also 
possible to reconstruct the temporal dynamics of SARS-CoV-2 internationally. During February and 
early March 2020, importations of SARS-CoV-2 into the UK came primarily from Italy, Spain and 
France (30). This is consistent with the inferred progression of infection during this period in our 
model; we estimated that Italy, Spain, France and Belgium all had over 6.5% of the population 
infected by 31st March 2020 (30). 

 
Consistent with other studies (3,22), we estimated that the true numbers of symptomatic cases and 
infections are appreciably larger than the number of confirmed cases reported (Figures 1 and 2). We 
also estimated that the timing of the peak level of symptomatic cases may be considerably earlier or 
later than the raw confirmed case curve suggests (Table 1). Accurate surveillance of an ongoing 
outbreak is crucial for estimating key epidemiological values such as the reproduction number, and 
hence evaluating the impact of control measures  (21).  If reported case numbers do not reflect the 
shape and magnitude of the underlying epidemic, it may bias estimates of transmission potential and 
effectiveness of interventions. If levels of under-ascertainment are increasing, early interventions may 
appear to be more effective than they actually are, which could lead to delays in imposing more 
stringent measures. Likewise, if ascertainment increases in the declining phase of an epidemic, the 
effectiveness of interventions may be underestimated, potentially leading to measures remaining in 
place for longer than they would have been had more accurate data been available. 
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 Date Value at peak 

Location 
Peak of confirmed 

cases 
Estimated change 

in  peak date 
New confirmed 
cases at peak 

Estimated total cases 
(95% CrI) 

Brazil  6th June 2020 0 days 54,771 
122,512 (110,660 - 

137,374) 

Chile 18th June 2020 3 days 36,179 52,042 (47,828 -  56,338)  

France 1st April 2020 0 days 7,578 
134,594 (120,450 - 

151,352) 

India 21st June 2020 18 days 15,413 48,513 (43,433 - 54,939) 

Iran 5th April 2020 0 days 5,275 17,931 (16,078 - 20,201) 

Italy 22nd March 2020 0 days 6,557 75,521 (64,229 - 91,630) 

Mexico 13th June 2020 0 days 5,222 55,661 (50,204 - 62,237) 

Peru 4th June 2020 0 days 24,603 24,603 (22,121 - 27,629) 

Russia 12th June 2020 4 days 11,656 15,604 (14,248 - 17¸270) 

Spain 27th March 2020 1 day 9,181 85,881 (77,697- 96,319) 

UK  12th April 2020 0 days 8,719 
100,870 (91,054 - 

112,639) 

USA 26th April 2020 21 days 48,529 
280,631 (226,097 - 

344,472) 

 
Table 1: Comparison between the confirmed and adjusted case numbers at their respective peaks 
for ten countries with the highest number of total confirmed cases and ten countries with the 
highest number of symptomatic cases after adjusting for under-ascertainment. Eight countries are 
in both lists, so the total is twelve distinct countries. We find that the peak of the case curves 
shifts when they are adjusted for under-ascertainment. Clearly, Mexico and Brazil haven’t 
necessarily peaked yet, given that they are not as far along their epidemic as the other countries. 
Therefore, for these countries, we simply report the date and number of the highest number of 
cases to-date. 
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